Square Hamiltonian cycles in graphs with maximal 4-cliques

被引:2
作者
Kierstead, HA [1 ]
Quintana, J [1 ]
机构
[1] ARIZONA STATE UNIV,DEPT MATH,TEMPE,AZ 85287
关键词
D O I
10.1016/S0012-365X(97)81819-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The square of a graph is obtained by adding additional edges joining all pairs of vertices with distance two in the original graph. Posa conjectured that if G is a simple graph on n vertices with minimum degree 2n/3, then G contains the square of a hamiltonian cycle. We show that Posa's conjecture holds for graphs that in addition contain a maximal 4-clique.
引用
收藏
页码:81 / 92
页数:12
相关论文
共 9 条
  • [1] [Anonymous], 1952, P LOND MATH SOC
  • [2] Erdos P., 1964, Problem 9, Theory of Graphs and its Applications, P159
  • [3] FAN G, 1994, SIAM J DISCRETE MATH, P203
  • [4] Hamiltonian square-paths
    Fan, GH
    Kierstead, HA
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 67 (02) : 167 - 182
  • [5] Fan GH, 1996, J GRAPH THEOR, V23, P241, DOI 10.1002/(SICI)1097-0118(199611)23:3<241::AID-JGT4>3.3.CO
  • [6] 2-K
  • [7] THE SQUARE OF PATHS AND CYCLES
    FAN, GH
    KIERSTEAD, HA
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (01) : 55 - 64
  • [8] KOMLOS J, SQUARE HAMILTONIAN C
  • [9] Seymour P., 1974, Combinatorics, P201