Enhanced Iris Recognition Method by Generative Adversarial Network-Based Image Reconstruction

被引:15
|
作者
Lee, Min Beom [1 ]
Kang, Jin Kyu [1 ]
Yoon, Hyo Sik [1 ]
Park, Kang Ryoung [1 ]
机构
[1] Dongguk Univ, Div Elect & Elect Engn, Seoul 04620, South Korea
基金
新加坡国家研究基金会;
关键词
Iris recognition; Feature extraction; Cameras; Databases; Image recognition; Support vector machines; Noise measurement; Biometrics; iris recognition; deep learning; generative adversarial network; COLOR;
D O I
10.1109/ACCESS.2021.3050788
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Iris recognition is one of the non-contact biometric identification methods that are hygienic and highly accurate. Iris recognition involves using iris images obtained by a near-infrared (NIR) camera or a visible light camera. A clear image of iris can be obtained when an NIR camera is used, but it requires an NIR illuminator in addition to the NIR camera. Iris recognition can be performed with a built-in camera device when a visible light camera is used, which also has the advantage of obtaining a three-channel image containing the color information. Accordingly, studies are being conducted on iris recognition by obtaining iris images from the face images taken by a high-resolution visible light camera in smartphones. However, when iris images have unconstrained conditions or are obtained without the cooperation of the subjects, the quality of iris images are reduced by noises such as optical and motion blur, off-angle view, specular reflection (SR), and other artifacts, thus ultimately deteriorating the recognition performance. Therefore, in this study, a method has been proposed for enhancing the quality of iris images by blurring the iris region and deep-learning-based deblurring. In addition, we propose the method for improving the recognition performance by integrating the recognition score in periocular regions and support vector machine (SVM). The method proposed in this study, which was experimented with noisy iris challenge evaluation-part II training database and MICHE database, exhibited an improved performance compared to the state-of-the-art methods.
引用
收藏
页码:10120 / 10135
页数:16
相关论文
共 50 条
  • [1] Conditional Generative Adversarial Network-Based Data Augmentation for Enhancement of Iris Recognition Accuracy
    Lee, Min Beom
    Kim, Yu Hwan
    Park, Kang Ryoung
    IEEE ACCESS, 2019, 7 : 122134 - 122152
  • [2] A Generative-Adversarial Network-Based Method for Image Synthesis of Diverse Pedestrian
    Li, Bo
    Liu, Zhenyuan
    Xing, Xingyu
    Jia, Tong
    Lu, Yuxiao
    Chen, Junyi
    CICTP 2023: INNOVATION-EMPOWERED TECHNOLOGY FOR SUSTAINABLE, INTELLIGENT, DECARBONIZED, AND CONNECTED TRANSPORTATION, 2023, : 300 - 309
  • [3] Constrained adversarial loss for generative adversarial network-based faithful image restoration
    Kim, Dong-Wook
    Chung, Jae-Ryun
    Kim, Jongho
    Lee, Dae Yeol
    Jeong, Se Yoon
    Jung, Seung-Won
    ETRI JOURNAL, 2019, 41 (04) : 415 - 425
  • [4] AGASI: A Generative Adversarial Network-Based Approach to Strengthening Adversarial Image Steganography
    Fan, Haiju
    Jin, Changyuan
    Li, Ming
    ENTROPY, 2025, 27 (03)
  • [5] A Generative Adversarial Network Based Deep Learning Method for Low-Quality Defect Image Reconstruction and Recognition
    Gao, Yiping
    Gao, Liang
    Li, Xinyu
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (05) : 3231 - 3240
  • [6] A Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement
    Perez, Andres D.
    Perdomo, Oscar
    Rios, Hernan
    Rodriguez, Francisco
    Gonzalez, Fabio A.
    OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2020, 2020, 12069 : 185 - 194
  • [7] Generative adversarial network based regularized image reconstruction for PET
    Xie, Zhaoheng
    Baikejiang, Reheman
    Li, Tiantian
    Zhang, Xuezhu
    Gong, Kuang
    Zhang, Mengxi
    Qi, Wenyuan
    Asma, Evren
    Qi, Jinyi
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (12):
  • [8] Dual Wasserstein generative adversarial network condition: A generative adversarial network-based acoustic impedance inversion method
    Wang, Zixu
    Wang, Shoudong
    Zhou, Chen
    Cheng, Wanli
    GEOPHYSICS, 2022, 87 (06) : R401 - R411
  • [9] Dual Wasserstein generative adversarial network condition: A generative adversarial network-based acoustic impedance inversion method
    Wang, Zixu
    Wang, Shoudong
    Zhou, Chen
    Cheng, Wanli
    Geophysics, 2022, 87 (06):
  • [10] Superresolution reconstruction method for ancient murals based on the stable enhanced generative adversarial network
    Cao, Jianfang
    Jia, Yiming
    Yan, Minmin
    Tian, Xiaodong
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2021, 2021 (01)