Affordance Detection of Tool Parts from Geometric Features

被引:0
作者
Myers, Austin [1 ]
Teo, Ching L. [1 ]
Fermiiller, Cornelia [1 ]
Aloimonos, Yiannis [1 ]
机构
[1] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
来源
2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) | 2015年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As robots begin to collaborate with humans in everyday workspaces, they will need to understand the functions of tools and their parts. To cut an apple or hammer a nail, robots need to not just know the tool's name, but they must localize the tool's parts and identify their functions. Intuitively, the geometry of a part is closely related to its possible functions, or its affordances. Therefore, we propose two approaches for learning affordances from local shape and geometry primitives: 1) superpixel based hierarchical matching pursuit S-HMP); and 2) structured random forests (SRF). Moreover, since a part can be used in many ways, we introduce a large RGB-Depth dataset where tool parts are labeled with multiple affordances and their relative rankings. With ranked affordances, we evaluate the proposed methods on 3 cluttered scenes and over 105 kitchen, workshop and garden tools, using ranked correlation and a weighted F-measure score [26]. Experimental results over sequences containing clutter, occlusions, and viewpoint changes show that the approaches return precise predictions that could be used by a robot. S-HMP achieves high accuracy but at a significant computational cost, while SRF provides slightly less accurate predictions but in real-time. Finally, we validate the effectiveness of our approaches on the Cornell Grasping Dataset [25] for detecting graspable regions, and achieve state-of-the-art performance.
引用
收藏
页码:1374 / 1381
页数:8
相关论文
共 36 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
Aldoma A, 2012, IEEE INT CONF ROBOT, P1732, DOI 10.1109/ICRA.2012.6224931
[3]  
[Anonymous], P IEEE INT C ROB AUT
[4]  
[Anonymous], 2011, PROC CVPR IEEE
[5]  
[Anonymous], 2013, DECISION FORESTS COM
[6]  
[Anonymous], 2012, Advances in Neural Information Processing Systems
[7]  
Bo L., 2012, ISER
[8]   Multipath Sparse Coding Using Hierarchical Matching Pursuit [J].
Bo, Liefeng ;
Ren, Xiaofeng ;
Fox, Dieter .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :660-667
[9]  
Bohg J., 2009, INT C ADV ROBOTICS, P1
[10]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893