Reach set computation using optimal control

被引:0
|
作者
Varaiya, P [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Reach set computation is a basic component of many verification and control synthesis procedures. Effective computation schemes are available for discrete systems described by finite state machines and continuous-variable systems described by linear differential inequalities. This paper suggests an approach based on the Pontryagin maximum principle of optimal control theory. The approach is elaborated for linear systems, and it may prove useful for more general continuous-variable systems.
引用
收藏
页码:323 / 331
页数:3
相关论文
共 50 条
  • [1] Aircraft autolander safety analysis through optimal control-based reach set computation
    Bayen, Alexandre M.
    Mitchell, Ian M.
    Oishi, Meeko M. K.
    Tomlin, Claire J.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2007, 30 (01) : 68 - 77
  • [2] Exact Computation of LTI Reach Set From Integrator Reach Set With Bounded Input
    Haddad, Shadi
    Khodary, Pansie
    Halder, Abhishek
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3980 - 3985
  • [3] Reach set computation and control synthesis for discrete-time dynamical systems with disturbances
    Kurzhanskiy, Alex A.
    Varaiya, Pravin
    AUTOMATICA, 2011, 47 (07) : 1414 - 1426
  • [4] Polyhedral Feasible Set Computation of MPC-Based Optimal Control Problems
    Lantao Xie
    Lei Xie
    Hongye Su
    Jingdai Wang
    IEEE/CAAJournalofAutomaticaSinica, 2018, 5 (04) : 765 - 770
  • [5] Polyhedral Feasible Set Computation of MPC-Based Optimal Control Problems
    Xie, Lantao
    Xie, Lei
    Su, Hongye
    Wang, Jingdai
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2018, 5 (04) : 765 - 770
  • [6] Safe Reach Set Computation via Neural Barrier Certificates
    Abate, Alessandro
    Bogomolov, Sergiy
    Edwards, Alec
    Potomkin, Kostiantyn
    Soudjani, Sadegh
    Zuliani, Paolo
    IFAC PAPERSONLINE, 2024, 58 (11): : 107 - 114
  • [7] Exploring ququart computation on a transmon using optimal control
    Seifert, Lennart Maximilian
    Li, Ziqian
    Roy, Tanay
    Schuster, David I.
    Chong, Frederic T.
    Baker, Jonathan M.
    PHYSICAL REVIEW A, 2023, 108 (06)
  • [8] Computation of Time Optimal Feedback Control Using Groebner Basis
    Patil, Deepak U.
    Chakraborty, Debraj
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (08) : 2271 - 2276
  • [9] COMPUTATION OF OPTIMAL CONTROL OF LINEAR SYSTEMS USING HAAR WAVELETS
    Biswas, Saroj
    Dong, Qing
    Bai, Li
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (5B): : 3819 - 3831
  • [10] COMPUTATION OF CHEBYCHEFF OPTIMAL CONTROL
    MICHAEL, GJ
    AIAA JOURNAL, 1971, 9 (05) : 973 - &