Measuring structural dynamics of chromosomes in living cells by fluorescence microscopy

被引:40
作者
Mora-Bermudez, Felipe [1 ]
Ellenberg, Jan [1 ]
机构
[1] European Mol Biol Lab, Gene Express Unit, D-69117 Heidelberg, Germany
关键词
mitosis; chromosome structure; chromosome condensation; live-cell imaging; quantitative fluorescence microscopy; 4D imaging;
D O I
10.1016/j.ymeth.2006.07.035
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Mitotic and meiotic chromosomes are the compact packages that faithfully transport the genetic and epigenetic information to the following cell generations. How chromatin dynamically cycles between the decompacted interphase state that supports transcription and replication and the compacted state required for chromosome segregation is not understood. To address this long-standing problem, the structure of chromatin should ideally be studied in the physiological context of intact cells and organisms. We discuss here, the contributions that live-cell imaging can and has made to the study of mitotic chromosome compaction and highlight the power and limitations of this approach. We review methodologies used and suggest that combinatorial approaches and developing new imaging technologies will be key to shedding light on this long-standing question in cell biology. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:158 / 167
页数:10
相关论文
共 77 条
[1]  
AGARD DA, 1989, METHOD CELL BIOL, V30, P353
[2]   3-DIMENSIONAL ARCHITECTURE OF A POLYTENE NUCLEUS [J].
AGARD, DA ;
SEDAT, JW .
NATURE, 1983, 302 (5910) :676-681
[3]   The mitotic chromosome is an assembly of rigid elastic axes organized by structural maintenance of chromosomes (SMC) proteins and surrounded by a soft chromatin envelope [J].
Almagro, S ;
Riveline, D ;
Hirano, T ;
Houchmandzadeh, B ;
Dimitrov, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (07) :5118-5126
[4]   Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina [J].
Beaudouin, J ;
Gerlich, D ;
Daigle, N ;
Eils, R ;
Ellenberg, J .
CELL, 2002, 108 (01) :83-96
[5]   Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins [J].
Beaudouin, JL ;
Mora-Bermúdez, F ;
Klee, T ;
Daigle, N ;
Ellenberg, J .
BIOPHYSICAL JOURNAL, 2006, 90 (06) :1878-1894
[6]   Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin [J].
Bednar, J ;
Horowitz, RA ;
Grigoryev, SA ;
Carruthers, LM ;
Hansen, JC ;
Koster, AJ ;
Woodcock, CL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (24) :14173-14178
[7]   CHROMATIN CONFORMATION AND SALT-INDUCED COMPACTION - 3-DIMENSIONAL STRUCTURAL INFORMATION FROM CRYOELECTRON MICROSCOPY [J].
BEDNAR, J ;
HOROWITZ, RA ;
DUBOCHET, J ;
WOODCOCK, CL .
JOURNAL OF CELL BIOLOGY, 1995, 131 (06) :1365-1376
[8]   VISUALIZATION OF G1 CHROMOSOMES - A FOLDED, TWISTED, SUPERCOILED CHROMONEMA MODEL OF INTERPHASE CHROMATID STRUCTURE [J].
BELMONT, AS ;
BRUCE, K .
JOURNAL OF CELL BIOLOGY, 1994, 127 (02) :287-302
[9]   Large-scale chromatin structure and function [J].
Belmont, AS ;
Dietzel, S ;
Nye, AC ;
Strukov, YG ;
Tumbar, T .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (03) :307-311
[10]   A 3-DIMENSIONAL APPROACH TO MITOTIC CHROMOSOME STRUCTURE - EVIDENCE FOR A COMPLEX HIERARCHICAL ORGANIZATION [J].
BELMONT, AS ;
SEDAT, JW ;
AGARD, DA .
JOURNAL OF CELL BIOLOGY, 1987, 105 (01) :77-92