Pressure-conductive rubber sensor based on liquid-metal-PDMS composite

被引:43
作者
Oh, Jun Ho [1 ]
Woo, Ju Yeon [2 ]
Jo, Sunghwan [3 ]
Han, Chang-Soo [1 ,2 ,3 ]
机构
[1] Korea Univ, Sch Mech Engn, Seoul 02841, South Korea
[2] Korea Univ, Inst Adv Machinery Design Technol, Seoul 02841, South Korea
[3] Korea Univ, Dept Micro Nano Syst, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Liquid metal; Pressure conductive rubber; Composite; Electrical conductivity; Sensor; STRAIN SENSORS; HYSTERESIS; MATRIX; ARRAYS;
D O I
10.1016/j.sna.2019.111610
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a pressure-conductive rubber sensor using a liquid-metal-polydimethylsiloxane (PDMS) composite suitable for incorporation onto surfaces with a complex curvature such as the human body. The composite is synthesized by physical mixing of Galinstan and PDMS based on magnetic stirring. This composite is conductive only when a mechanical pressure exceeding the threshold value or strain is applied; the pristine state of the composite is not conductive. The threshold value can be controlled by adjusting the mixing ratio of liquid metal and PDMS. This material is mechanically robust, allowing it to operate reliably under various elastic deformations such as pressing, stretching, and bending without structural failure and performance degradation. Moreover, a fabricated sensor array can detect the distribution of the applied pressure in plane. As a feasibility study, we demonstrate a pressure-conductive rubber sensor for detecting finger movements and bio-signals such as blood pressure and respiration rate. Our results reveal that our rubber sensor is practical as a wearable sensor because of its mechanical robustness and electrical reliability. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 30 条
[1]  
Akter T., 2014, ACS APPL MATER INTER, V4, P1855
[2]   Highly conductive and stretchable polymer composites based on graphene/MWCNT network [J].
Chen, Mengting ;
Tao, Tao ;
Zhang, Ling ;
Gao, Wei ;
Li, Chunzhong .
CHEMICAL COMMUNICATIONS, 2013, 49 (16) :1612-1614
[3]   Liquid-Phase Metal Inclusions for a Conductive Polymer Composite [J].
Fassler, Andrew ;
Majidi, Carmel .
ADVANCED MATERIALS, 2015, 27 (11) :1928-+
[4]   Giant Moisture Responsiveness of VS2 Ultrathin Nanosheets for Novel Touchless Positioning Interface [J].
Feng, Jun ;
Peng, Lele ;
Wu, Changzheng ;
Sun, Xu ;
Hu, Shuanglin ;
Lin, Chenwen ;
Dai, Jun ;
Yang, Jinlong ;
Xie, Yi .
ADVANCED MATERIALS, 2012, 24 (15) :1969-1974
[5]   Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites [J].
Fu, Shao-Yun ;
Feng, Xi-Qiao ;
Lauke, Bernd ;
Mai, Yiu-Wing .
COMPOSITES PART B-ENGINEERING, 2008, 39 (06) :933-961
[6]   An Overview of the Development of Flexible Sensors [J].
Han, Su-Ting ;
Peng, Haiyan ;
Sun, Qijun ;
Venkatesh, Shishir ;
Chung, Kam-Sing ;
Lau, Siu Chuen ;
Zhou, Ye ;
Roy, V. A. L. .
ADVANCED MATERIALS, 2017, 29 (33)
[7]   Different fabrication methods of out-of-plane polymer hollow needle arrays and their variations [J].
Huang, H. ;
Fu, C. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (02) :393-402
[8]   Effect of aspect ratio of multiwall carbon nanotubes on resistance-pressure sensitivity of rubber nanocomposites [J].
Jiang, Mei-Juan ;
Dang, Zhi-Min ;
Xu, Hai-Ping ;
Yao, Sheng-Hong ;
Bai, Jinbo .
APPLIED PHYSICS LETTERS, 2007, 91 (07)
[9]   Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials [J].
Knite, M ;
Teteris, V ;
Kiploka, A ;
Kaupuzs, J .
SENSORS AND ACTUATORS A-PHYSICAL, 2004, 110 (1-3) :142-149
[10]   3D Printing of Free Standing Liquid Metal Microstructures [J].
Ladd, Collin ;
So, Ju-Hee ;
Muth, John ;
Dickey, Michael D. .
ADVANCED MATERIALS, 2013, 25 (36) :5081-5085