BOUNDEDNESS OF FOURIER INTEGRAL OPERATORS ON FLp SPACES

被引:37
作者
Cordero, Elena [1 ]
Nicola, Fabio [2 ]
Rodino, Luigi [1 ]
机构
[1] Univ Turin, Dept Math, I-10123 Turin, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
Fourier Integral Operators; FLp spaces; Beurling-Helson's theorem; modulation spaces; short-time Fourier transform; MODULATION SPACES;
D O I
10.1090/S0002-9947-09-04848-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the action of Fourier Integral Operators (FIOs) of Hormander's type on FLp (R-d)(comp), 1 <= p <= infinity We see, from the Beurling-Helson theorem, that generally FIOs of order zero fail to be bounded oil these spaces when p not equal 2, the counterexample being given by any smooth non-linear change of variable Here we show that FIOs of order m = -d vertical bar 1/2 - 1/p vertical bar are instead bounded. Moreover, this loss of derivatives is proved to be sharp ill every dimension d >= 1, even for phases which are linear in the dual variables The proofs make use of tools from time-frequency analysis such as the theory of modulation spaces
引用
收藏
页码:6049 / 6071
页数:23
相关论文
共 26 条
[1]   Unimodular Fourier multipliers for modulation spaces [J].
Benyi, Arpad ;
Groechenig, Karlheinz ;
Okoudjou, Kasso A. ;
Rogers, Luke G. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 246 (02) :366-384
[2]  
BEURLING A, 1933, MATH SCAND, V1, P120
[3]  
Boulkhemair A, 1997, MATH RES LETT, V4, P53
[4]  
CONCETTI F, ARXIV07103834
[5]  
CORDERO E, 2007, ARXIV07103652V1
[6]   Metaplectic representation on Wiener amalgam spaces and applications to the Schrodinger equation [J].
Cordero, Elena ;
Nicola, Fabio .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (02) :506-534
[7]   THE UNCERTAINTY PRINCIPLE [J].
FEFFERMAN, CL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 9 (02) :129-206
[8]   GENERALIZED AMALGAMS, WITH APPLICATIONS TO FOURIER-TRANSFORM [J].
FEICHTINGER, HG .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1990, 42 (03) :395-409
[9]   ATOMIC CHARACTERIZATIONS OF MODULATION SPACES THROUGH GABOR-TYPE REPRESENTATIONS [J].
FEICHTINGER, HG .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1989, 19 (01) :113-125
[10]   BANACH-SPACES RELATED TO INTEGRABLE GROUP-REPRESENTATIONS AND THEIR ATOMIC DECOMPOSITIONS .2. [J].
FEICHTINGER, HG ;
GROCHENIG, KH .
MONATSHEFTE FUR MATHEMATIK, 1989, 108 (2-3) :129-148