Triple diode parameter estimation of solar PV cell using hybrid algorithm

被引:55
作者
Singla, M. K. [1 ]
Nijhawan, P. [1 ]
机构
[1] Thapar Inst Engn & Technol Patiala, Elect & Instrumentat Engn Dept, Patiala, Punjab, India
关键词
Triple diode model; GWOCSA; Error analysis; Ambient temperature variation;
D O I
10.1007/s13762-021-03286-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solar photovoltaic (PV) systems are now one of the most prominent green energy technologies for producing a significant proportion of electricity. With the increased attention towards solar PV-based systems, the effective and precise estimation of PV cell parameters has received considerable attention from researchers. Extracting the parameters of the solar PV model is quite important for precise modelling, assessment and control of the PV system. Mostly theoretical, computational and meta-heuristic in the last few years have been proposed which extract parameters of PV cell based on the experimental results. Extracting PV model parameters, however, remains a major challenge. The application of a new hybrid algorithm that relies on the Grey Wolf Optimizer and Cuckoo Search Algorithm is being proposed in this manuscript to extract the parameters of various PV cell models. The parameter optimization results are obtained using GWOCSA and are further compared with those obtained with five other algorithms, i.e. PSO, MVO, SCA, CSA, and GWO. The complete error analysis is carried out for TDM of PV cells to establish the superiority of GWOCSA. The superiority of proposed algorithm is established using ranking test, statistical error analysis, and sensitivity temperature variation.
引用
收藏
页码:4265 / 4288
页数:24
相关论文
共 54 条
[1]   An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models [J].
Abbassi, Rabeh ;
Abbassi, Abdelkader ;
Heidari, Ali Asghar ;
Mirjalili, Seyedali .
ENERGY CONVERSION AND MANAGEMENT, 2019, 179 :362-372
[2]   Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm [J].
Abd Elaziz, Mohamed ;
Oliva, Diego .
ENERGY CONVERSION AND MANAGEMENT, 2018, 171 :1843-1859
[3]   Flower Pollination Algorithm based solar PV parameter estimation [J].
Alam, D. F. ;
Yousri, D. A. ;
Eteiba, M. B. .
ENERGY CONVERSION AND MANAGEMENT, 2015, 101 :410-422
[4]   Parameter extraction of photovoltaic generating units using multi-verse optimizer [J].
Ali, E. E. ;
El-Hameed, M. A. ;
El-Fergany, A. A. ;
El-Arini, M. M. .
SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2016, 17 :68-76
[5]   Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm [J].
Allam, Dalia ;
Yousri, D. A. ;
Eteiba, M. B. .
ENERGY CONVERSION AND MANAGEMENT, 2016, 123 :535-548
[6]   Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach [J].
Askarzadeh, Alireza ;
Coelho, Leandro dos Santos .
ENERGY CONVERSION AND MANAGEMENT, 2015, 89 :608-614
[7]   Parameter identification for solar cell models using harmony search-based algorithms [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
SOLAR ENERGY, 2012, 86 (11) :3241-3249
[8]   Critical evaluation of Genetic Algorithm based fuel cell parameter extraction [J].
Balasubramanian, Karthik ;
Jacob, Basil ;
Priya, K. ;
Sangeetha, K. ;
Rajasekar, N. ;
Babu, T. Sudhakar .
CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 :1975-1982
[9]   Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms [J].
Beigi, Amir Mohammad ;
Maroosi, Ali .
SOLAR ENERGY, 2018, 171 :435-446
[10]   An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models [J].
Chen, Huiling ;
Jiao, Shan ;
Heidari, Ali Asghar ;
Wang, Mingjing ;
Chen, Xu ;
Zhao, Xuehua .
ENERGY CONVERSION AND MANAGEMENT, 2019, 195 :927-942