Stochastic Linear Quadratic Control Problem on Time Scales

被引:0
作者
Zhu, Yingjun [1 ]
Jia, Guangyan [1 ]
机构
[1] Shandong Univ, Zhongtai Secur Inst Financial Studies, Jinan 250100, Peoples R China
基金
国家重点研发计划;
关键词
DYNAMIC-SYSTEMS; BROWNIAN-MOTION; CALCULUS; REGULATORS; EQUATIONS;
D O I
10.1155/2021/5743014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper addresses a version of the stochastic linear quadratic control problem on time scales (S Delta LQ, which includes the discrete time and continuous time as special cases. Riccati equations on time scales are given, and the optimal control can be expressed as a linear state feedback. Furthermore, we present the uniqueness and existence of the solution to the Riccati equation on time scales. Furthermore, we give an example to illustrate the theoretical results.
引用
收藏
页数:12
相关论文
共 30 条
[1]  
Agarwal R. P., 1999, RESULTS MATH, V35, P3, DOI DOI 10.1007/BF03322019
[2]   An application of time scales to economics [J].
Atici, FM ;
Biles, DC ;
Lebedinsky, A .
MATHEMATICAL AND COMPUTER MODELLING, 2006, 43 (7-8) :718-726
[3]  
Bohner M, 2004, DYNAM SYST APPL, V13, P339
[4]  
Bohner M., 2002, ADV DYNAMIC EQUATION
[5]  
Bohner M., 2010, Int. J. Difference Equ, V5, P149
[6]   Double integral calculus of variations on time scales [J].
Bohner, Martin ;
Guseinov, Gusein Sh. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (01) :45-57
[7]   Pontryagin's maximum principle for dynamic systems on time scales [J].
Bohner, Martin ;
Kenzhebaev, Kenzhegaly ;
Lavrova, Olga ;
Stanzhytskyi, Oleksandr .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (07) :1161-1189
[8]  
Bohner M, 2013, ELECTRON J DIFFER EQ
[9]  
Boyd S., 1994, SIAM FRONTIER SERIES
[10]   Stochastic linear quadratic regulators with indefinite control weight costs [J].
Chen, SP ;
Li, XJ ;
Zhou, XY .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (05) :1685-1702