Infinitely many high energy radial solutions for Schrodinger-Poisson system

被引:4
作者
Wang, Yi-Nuo [1 ]
Wu, Xing-Ping [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
关键词
Schrodinger-Poisson system; High energy radial solutions; Minimax principle; Symmetric mountain pass; SCALAR FIELD-EQUATIONS; GROUND-STATE SOLUTIONS; EXISTENCE;
D O I
10.1016/j.aml.2019.106012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following Schrodinger-Poisson system {-Delta u + u + phi u = f(u), in R-3, -Delta phi = u(2), in R-3, where f is an element of C(R,R), and there exists mu > 3 such that 1/mu f(t)t >= F(t) > 0 with t is an element of R\{0}. We obtain infinitely many high energy radial solutions for the system by using a method generating a Palais-Smale sequence with an extra property related to Pohozaev identity. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 14 条
[1]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[2]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[3]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[4]  
Benci V., 1998, Topol Methods Nonlinear Anal, V11, P283, DOI DOI 10.12775/TMNA.1998.019
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]   Positive solutions for some non-autonomous Schrodinger-Poisson systems [J].
Cerami, Giovanna ;
Vaira, Giusi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :521-543
[7]   High energy solutions for the superlinear Schrodinger-Maxwell equations [J].
Chen, Shang-Jie ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4927-4934
[8]  
Hirata J, 2010, TOPOL METHOD NONL AN, V35, P253
[9]   Existence of solutions with prescribed norm for semilinear elliptic equations [J].
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (10) :1633-1659
[10]  
Rabinowitz PH, 1986, MINIMAX METHODS CRIT