Automated end-to-end management of the modeling lifecycle in deep learning

被引:17
作者
Gharibi, Gharib [1 ]
Walunj, Vijay [1 ]
Nekadi, Raju [1 ]
Marri, Raj [1 ]
Lee, Yugyung [1 ]
机构
[1] Univ Missouri, Sch Comp & Engn, 5000 Holmes St, Kansas City, MO 64110 USA
关键词
Data management; Deep learning; Software automation;
D O I
10.1007/s10664-020-09894-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Deep learning has improved the state-of-the-art results in an ever-growing number of domains. This success heavily relies on the development and training of deep learning models-an experimental, iterative process that produces tens to hundreds of models before arriving at a satisfactory result. While there has been a surge in the number of tools and frameworks that aim at facilitating deep learning, the process of managing the models and their artifacts is still surprisingly challenging and time-consuming. Existing model-management solutions are either tailored for commercial platforms or require significant code changes. Moreover, most of the existing solutions address a single phase of the modeling lifecycle, such as experiment monitoring, while ignoring other essential tasks, such as model deployment. In this paper, we present a software system to facilitate and accelerate the deep learning lifecycle, named ModelKB. ModelKB can automatically manage the modeling lifecycle end-to-end, including (1) monitoring and tracking experiments; (2) visualizing, searching for, and comparing models and experiments; (3) deploying models locally and on the cloud; and (4) sharing and publishing trained models. Moreover, our system provides a stepping-stone for enhanced reproducibility. ModelKB currently supports TensorFlow 2.0, Keras, and PyTorch, and it can be extended to other deep learning frameworks easily.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Predicting Influenza A Tropism with End-to-End Learning of Deep Networks
    Scarafoni, Dan
    Telfer, Brian A.
    Ricke, Darrell O.
    Thornton, Jason R.
    Comolli, James
    HEALTH SECURITY, 2019, 17 (06) : 468 - 476
  • [32] Automated stenosis estimation of coronary angiographies using end-to-end learning
    Eschen, Christian Kim
    Banasik, Karina
    Dahl, Anders Bjorholm
    Chmura, Piotr Jaroslaw
    Bruun-Rasmussen, Peter
    Pedersen, Frants
    Kober, Lars
    Engstrom, Thomas
    Bottcher, Morten
    Winther, Simon
    Christensen, Alex Horby
    Bundgaard, Henning
    Brunak, Soren
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2025, 41 (03) : 441 - 452
  • [33] An End-to-End Deep Learning Approach to Simultaneous Speech Dereverberation and Acoustic Modeling for Robust Speech Recognition
    Wu, Bo
    Li, Kehuang
    Ge, Fengpei
    Huang, Zhen
    Yang, Minglei
    Siniscalchi, Sabato Marco
    Lee, Chin-Hui
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2017, 11 (08) : 1289 - 1300
  • [34] MODELING NONLINEAR AUDIO EFFECTS WITH END-TO-END DEEP NEURAL NETWORKS
    Ramirez, Marco A. Martinez
    Reiss, Joshua D.
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 171 - 175
  • [35] A Multimodal End-to-End Deep Learning Architecture for Music Popularity Prediction
    Martin-Gutierrez, David
    Hernandez Penaloza, Gustavo
    Belmonte-Hernandez, Alberto
    Alvarez Garcia, Federico
    IEEE ACCESS, 2020, 8 : 39361 - 39374
  • [36] Incorporating Deep Learning Model Development With an End-to-End Data Pipeline
    Zhang, Kaichong
    IEEE ACCESS, 2024, 12 : 127522 - 127531
  • [37] A robust and interpretable end-to-end deep learning model for cytometry data
    Hu, Zicheng
    Tang, Alice
    Singh, Jaiveer
    Bhattacharya, Sanchita
    Butte, Atul J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (35) : 21373 - 21380
  • [38] Improving end-to-end deep learning methods for Arabic handwriting recognition
    Boualam, Manal
    Elfakir, Youssef
    Khaissidi, Ghizlane
    Mrabti, Mostafa
    Aouraghe, Ibtissame
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (06)
  • [39] Amyloid PET Quantification Via End-to-End Training of a Deep Learning
    Kim, Ji-Young
    Suh, Hoon Young
    Ryoo, Hyun Gee
    Oh, Dongkyu
    Choi, Hongyoon
    Paeng, Jin Chul
    Cheon, Gi Jeong
    Kang, Keon Wook
    Lee, Dong Soo
    NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 53 (05) : 340 - 348
  • [40] An End-to-End Deep Learning Pipeline for Assigning Secondary Structure in Proteins
    Jisna, V. A.
    Jayaraj, P. B.
    JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY, 2022, 21 (03): : 335 - 348