Automated end-to-end management of the modeling lifecycle in deep learning

被引:17
|
作者
Gharibi, Gharib [1 ]
Walunj, Vijay [1 ]
Nekadi, Raju [1 ]
Marri, Raj [1 ]
Lee, Yugyung [1 ]
机构
[1] Univ Missouri, Sch Comp & Engn, 5000 Holmes St, Kansas City, MO 64110 USA
关键词
Data management; Deep learning; Software automation;
D O I
10.1007/s10664-020-09894-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Deep learning has improved the state-of-the-art results in an ever-growing number of domains. This success heavily relies on the development and training of deep learning models-an experimental, iterative process that produces tens to hundreds of models before arriving at a satisfactory result. While there has been a surge in the number of tools and frameworks that aim at facilitating deep learning, the process of managing the models and their artifacts is still surprisingly challenging and time-consuming. Existing model-management solutions are either tailored for commercial platforms or require significant code changes. Moreover, most of the existing solutions address a single phase of the modeling lifecycle, such as experiment monitoring, while ignoring other essential tasks, such as model deployment. In this paper, we present a software system to facilitate and accelerate the deep learning lifecycle, named ModelKB. ModelKB can automatically manage the modeling lifecycle end-to-end, including (1) monitoring and tracking experiments; (2) visualizing, searching for, and comparing models and experiments; (3) deploying models locally and on the cloud; and (4) sharing and publishing trained models. Moreover, our system provides a stepping-stone for enhanced reproducibility. ModelKB currently supports TensorFlow 2.0, Keras, and PyTorch, and it can be extended to other deep learning frameworks easily.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Automated end-to-end management of the modeling lifecycle in deep learning
    Gharib Gharibi
    Vijay Walunj
    Raju Nekadi
    Raj Marri
    Yugyung Lee
    Empirical Software Engineering, 2021, 26
  • [2] ModelKB: Towards Automated Management of the Modeling Lifecycle in Deep Learning
    Gharibi, Gharib
    Walunj, Vijay
    Rella, Sirisha
    Lee, Yugyung
    2019 IEEE/ACM 7TH INTERNATIONAL WORKSHOP ON REALIZING ARTIFICIAL INTELLIGENCE SYNERGIES IN SOFTWARE ENGINEERING (RAISE 2019), 2019, : 28 - 34
  • [3] A Practical End-to-End Inventory Management Model with Deep Learning
    Qi, Meng
    Shi, Yuanyuan
    Qi, Yongzhi
    Ma, Chenxin
    Yuan, Rong
    Wu, Di
    Shen, Zuo-Jun
    MANAGEMENT SCIENCE, 2023, 69 (02) : 759 - 773
  • [4] End-to-end Lithography Modeling Based on Process Parameters and Deep Learning
    Lin, Zebang
    Ren, Kun
    Gao, Dawei
    Wu, Yongyu
    Xu, Shibin
    Lu, Miaomiao
    2024 INTERNATIONAL SYMPOSIUM OF ELECTRONICS DESIGN AUTOMATION, ISEDA 2024, 2024, : 524 - 529
  • [5] Acceleration of spleen segmentation with end-to-end deep learning method and automated pipeline
    Moon, Hyeonsoo
    Huo, Yuankai
    Abramson, Richard G.
    Peters, Richard Alan
    Assad, Albert
    Moyo, Tamara K.
    Savona, Michael R.
    Landman, Bennett A.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 107 : 109 - 117
  • [6] End-to-End Deep Learning for Robotic Following
    Pierre, John M.
    ICMSCE 2018: PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON MECHATRONICS SYSTEMS AND CONTROL ENGINEERING, 2015, : 77 - 85
  • [7] End-to-end analysis modeling of vibrational spectroscopy based on deep learning approach
    Wang, Xin
    Yu, Long
    Tian, Shengwei
    Lv, Xiaoyi
    Meng, Xin
    Zhang, Wendong
    JOURNAL OF CHEMOMETRICS, 2020, 34 (10)
  • [8] Spectrum Monitoring Based on End-to-End Learning by Deep Learning
    Mahdiyeh Rahmani
    Reza Ghazizadeh
    International Journal of Wireless Information Networks, 2022, 29 : 180 - 192
  • [9] Spectrum Monitoring Based on End-to-End Learning by Deep Learning
    Rahmani, Mahdiyeh
    Ghazizadeh, Reza
    INTERNATIONAL JOURNAL OF WIRELESS INFORMATION NETWORKS, 2022, 29 (02) : 180 - 192
  • [10] Automated Pavement Condition Index Assessment with Deep Learning and Image Analysis: An End-to-End Approach
    Ibragimov, Eldor
    Kim, Yongsoo
    Lee, Jung Hee
    Cho, Junsang
    Lee, Jong-Jae
    SENSORS, 2024, 24 (07)