Entanglement generation between spinor Bose-Einstein condensates using Rydberg excitations

被引:16
作者
Idlas, Sandrine [1 ,2 ,3 ]
Domenzain, Luis [2 ,4 ]
Spreeuw, Robert [5 ]
Byrnes, Tim [1 ,2 ,6 ]
机构
[1] NYU, Shanghai 200122, Peoples R China
[2] Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
[3] Royal Inst Technol, KTH, Stockholm, Sweden
[4] Sorbonne Univ, Univ Paris 06, F-75230 Paris 05, France
[5] Univ Amsterdam, Van der Waals Zeeman Inst, NL-1090 GL Amsterdam, Netherlands
[6] NYU, NYU ECNU Inst Phys, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
QUANTUM TELEPORTATION; COMPUTATION; ARRAYS;
D O I
10.1103/PhysRevA.93.022319
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose an experimental scheme of generating entangled states between two spinor Bose-Einstein condensates (BECs) using Rydberg excitations. Due to the strong interaction between Rydberg atoms, the Rydberg excitation creates an interaction between two closely located BECs. The method is suitable particularly for atom chip and permanent magnetic trap systems, which can create many BECs with an arbitrary two-dimensional geometry. We show two schemes of entangled state generation, based on stimulated Raman adiabatic passage (STIRAP) methods. The first method produces a symmetric state with total S-x spin zero between ground and excited states of the atoms using a single STIRAP pair, while the second produces a NOON state between hyperfine ground states using two STIRAP pairs. We show that despite the additional complexity of the BECs, it is possible to identify the initial and final adiabatic states exactly. We verify our theoretical predictions using numerical simulations on small boson number systems.
引用
收藏
页数:12
相关论文
共 40 条
  • [1] Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps
    Abdelrahman, Ahmed
    Mukai, Tetsuya
    Haeffner, Hartmut
    Byrnes, Tim
    [J]. OPTICS EXPRESS, 2014, 22 (03): : 3501 - 3513
  • [2] Adami C, 1999, LECT NOTES COMPUT SC, V1509, P391
  • [3] Quantum teleportation between remote atomic-ensemble quantum memories
    Bao, Xiao-Hui
    Xu, Xiao-Fan
    Li, Che-Ming
    Yuan, Zhen-Sheng
    Lu, Chao-Yang
    Pan, Jian-Wei
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (50) : 20347 - 20351
  • [4] Integrated Mach-Zehnder interferometer for Bose-Einstein condensates
    Berrada, T.
    van Frank, S.
    Buecker, R.
    Schumm, T.
    Schaff, J. -F.
    Schmiedmayer, J.
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [6] Quantum gates in mesoscopic atomic ensembles based on adiabatic passage and Rydberg blockade
    Beterov, I. I.
    Saffman, M.
    Yakshina, E. A.
    Zhukov, V. P.
    Tretyakov, D. B.
    Entin, V. M.
    Ryabtsev, I. I.
    Mansell, C. W.
    MacCormick, C.
    Bergamini, S.
    Fedoruk, M. P.
    [J]. PHYSICAL REVIEW A, 2013, 88 (01):
  • [7] Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip
    Boehi, Pascal
    Riedel, Max F.
    Hoffrogge, Johannes
    Reichel, Jakob
    Haensch, TheodorW.
    Treutlein, Philipp
    [J]. NATURE PHYSICS, 2009, 5 (08) : 592 - 597
  • [8] Fractality and macroscopic entanglement in two-component Bose-Einstein condensates
    Byrnes, Tim
    [J]. PHYSICAL REVIEW A, 2013, 88 (02):
  • [9] Macroscopic quantum computation using Bose-Einstein condensates
    Byrnes, Tim
    Wen, Kai
    Yamamoto, Yoshihisa
    [J]. PHYSICAL REVIEW A, 2012, 85 (04):
  • [10] Formation of NOON states from Fock-state Bose-Einstein condensates
    Cable, H.
    Laloe, F.
    Mullin, W. J.
    [J]. PHYSICAL REVIEW A, 2011, 83 (05):