Fixed rings of generalized Weyl algebras

被引:6
作者
Gaddis, Jason [1 ]
Won, Robert [2 ,3 ]
机构
[1] Miami Univ, Dept Math, 301 S Patterson Ave, Oxford, OH 45056 USA
[2] Wake Forest Univ, Dept Math & Stat, POB 7388, Winston Salem, NC 27109 USA
[3] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
关键词
Generalized Weyl algebras; Fixed rings; Filtered group actions; Auslander's Theorem; AUTOMORPHISMS; DEFORMATIONS;
D O I
10.1016/j.jalgebra.2019.06.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study actions by filtered automorphisms on classical generalized Weyl algebras (GWAs). In the case of a defining polynomial of degree two, we prove that the fixed ring under the action of a finite cyclic group of filtered automorphisms is again a classical GWA, extending a result of Jordan and Wells. Partial results are provided for the case of higher degree polynomials. In addition, we establish a version of Auslander's theorem for finite cyclic groups of filtered automorphisms acting on classical GWAs. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:149 / 169
页数:21
相关论文
共 20 条
[1]   FIXED RINGS OF THE WEYL ALGEBRA A1(C) [J].
ALEV, J ;
HODGES, TJ ;
VELEZ, JD .
JOURNAL OF ALGEBRA, 1990, 130 (01) :83-96
[2]   A RIGIDITY THEOREM FOR FINITE-GROUP ACTIONS ON ENVELOPING-ALGEBRAS OF SEMISIMPLE LIE-ALGEBRAS [J].
ALEV, J ;
POLO, P .
ADVANCES IN MATHEMATICS, 1995, 111 (02) :208-226
[3]   PURITY OF BRANCH LOCUS [J].
AUSLANDER, M .
AMERICAN JOURNAL OF MATHEMATICS, 1962, 84 (01) :116-&
[4]   NONCOMMUTATIVE AUSLANDER THEOREM [J].
Bao, Y. -H. ;
He, J. -W. ;
Zhang, J. J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (12) :8613-8638
[5]   Pertinency of Hopf actions and quotient categories of Cohen-Macaulay algebras [J].
Bao, Yanhong ;
He, Jiwei ;
Zhang, James J. .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2019, 13 (02) :667-710
[6]  
Bavula V, 1996, B SCI MATH, V120, P293
[7]  
Bavula V.V., 1992, Algebra Anal., V4, P75
[8]  
Bavula VV, 2000, T AM MATH SOC, V353, P769
[9]   AUSLANDER'S THEOREM FOR PERMUTATION ACTIONS ON NONCOMMUTATIVE ALGEBRAS [J].
Gaddis, Jason ;
Kirkman, Ellen ;
Moore, W. Frank ;
Won, Robert .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (05) :1881-1896
[10]   NONCOMMUTATIVE DEFORMATIONS OF TYPE-A KLEINIAN SINGULARITIES [J].
HODGES, TJ .
JOURNAL OF ALGEBRA, 1993, 161 (02) :271-290