A SEMI-SUPERVISED APPROACH FOR IDENTIFYING ABNORMAL HEART SOUNDS USING VARIATIONAL AUTOENCODER

被引:0
|
作者
Banerjee, Rohan [1 ]
Ghose, Avik [1 ]
机构
[1] Tata Consultancy Serv, Res & Innovat, Mumbai, Maharashtra, India
来源
2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2020年
关键词
Heart sounds; Variational Autoencoder; Semi-supervised learning; Convolutional Neural Network; CLASSIFICATION;
D O I
10.1109/icassp40776.2020.9054632
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Abnormal heart sounds may have diverse frequency characteristics depending upon underlying pathological conditions. Designing a binary classifier for predicting normal and abnormal heart sounds using supervised learning requires a lot of training data, covering different types of cardiac abnormalities. In this paper, we propose a semi-supervised approach to solve the problem. A convolutional Variational Autoencoder (VAE) structure is defined for learning the probability distribution of the spectrogram properties of normal heart sounds. The Kullback-Leibler (KL) divergence between the known prior distribution of the VAE and the encoded distribution is taken as an anomaly score for detecting abnormal heart sounds. The proposed approach is evaluated on open access and in-house datasets of Phonocardiogram (PCG) signals, recorded from normal subjects and patients, having cardiovascular diseases, cardiac murmurs and extra heart sounds. Results show that an improved classification performance is achieved in comparison to the existing approaches.
引用
收藏
页码:1249 / 1253
页数:5
相关论文
共 50 条
  • [1] Semi-supervised Learning Using Variational Autoencoder - A Cluster Based Approach
    Vengalil, Sunil Kumar
    Sinha, Neelam
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2021, 2024, 13102 : 529 - 536
  • [2] Semi-Supervised Adversarial Variational Autoencoder
    Zemouri, Ryad
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2020, 2 (03): : 361 - 378
  • [3] Semi-supervised Variational Autoencoder for WiFi Indoor Localization
    Chidlovskii, Boris
    Antsfeld, Leonid
    2019 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 2019,
  • [4] Semi-supervised dimensional sentiment analysis with variational autoencoder
    Wu, Chuhan
    Wu, Fangzhao
    Wu, Sixing
    Yuan, Zhigang
    Liu, Junxin
    Huang, Yongfeng
    KNOWLEDGE-BASED SYSTEMS, 2019, 165 : 30 - 39
  • [5] Gaussian Mixture Variational Autoencoder for Semi-Supervised Topic Modeling
    Zhou, Cangqi
    Ban, Hao
    Zhang, Jing
    Li, Qianmu
    Zhang, Yinghua
    IEEE ACCESS, 2020, 8 : 106843 - 106854
  • [6] Customization of latent space in semi-supervised Variational AutoEncoder
    An, Seunghwan
    Jeon, Jong-June
    PATTERN RECOGNITION LETTERS, 2024, 177 : 54 - 60
  • [7] Semi-Supervised Recurrent Variational Autoencoder Approach for Visual Diagnosis of Atrial Fibrillation
    Costa, Nahuel
    Sanchez, Luciano
    Couso, Ines
    IEEE ACCESS, 2021, 9 : 40227 - 40239
  • [8] An Improved Semi-supervised Variational Autoencoder with Gate Mechanism for Text Classification
    Ye, Haiming
    Zhang, Weiwen
    Nie, Mengna
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (10)
  • [9] GeoSDVA: A Semi-Supervised Dirichlet Variational Autoencoder Model for Transportation Mode Identification
    Zhang, Xiaoxi
    Gao, Yuan
    Wang, Xin
    Feng, Jun
    Shi, Yan
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (05)
  • [10] Fault diagnosis of power equipment based on variational autoencoder and semi-supervised learning
    Ye, Bo
    Li, Feng
    Zhang, Linghao
    Chang, Zhengwei
    Wang, Bin
    Zhang, Xiaoyu
    Bodanbai, Sayina
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (20)