Race and Genetics in Congenital Heart Disease: Application of iPSCs, Omics, and Machine Learning Technologies

被引:24
作者
Mullen, McKay [1 ,2 ]
Zhang, Angela [1 ,3 ]
Lui, George K. [1 ,4 ]
Romfh, Anitra W. [1 ,3 ,5 ]
Rhee, June-Wha [1 ,3 ]
Wu, Joseph C. [1 ,3 ,6 ]
机构
[1] Stanford Univ, Stanford Cardiovasc Inst, Stanford, CA 94305 USA
[2] Morehouse Sch Med, Dept Physiol, Atlanta, GA 30310 USA
[3] Stanford Univ, Dept Genet, Stanford Sch Med, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Med, Div Cardiovasc Med, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Pediat, Div Pediat Cardiol, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
来源
FRONTIERS IN CARDIOVASCULAR MEDICINE | 2021年 / 8卷
基金
美国国家卫生研究院;
关键词
congenital heart disease; iPSC; disease modeling; genomics; race; disparity;
D O I
10.3389/fcvm.2021.635280
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Congenital heart disease (CHD) is a multifaceted cardiovascular anomaly that occurs when there are structural abnormalities in the heart before birth. Although various risk factors are known to influence the development of this disease, a full comprehension of the etiology and treatment for different patient populations remains elusive. For instance, racial minorities are disproportionally affected by this disease and typically have worse prognosis, possibly due to environmental and genetic disparities. Although research into CHD has highlighted a wide range of causal factors, the reasons for these differences seen in different patient populations are not fully known. Cardiovascular disease modeling using induced pluripotent stem cells (iPSCs) is a novel approach for investigating possible genetic variants in CHD that may be race specific, making it a valuable tool to help solve the mystery of higher incidence and mortality rates among minorities. Herein, we first review the prevalence, risk factors, and genetics of CHD and then discuss the use of iPSCs, omics, and machine learning technologies to investigate the etiology of CHD and its connection to racial disparities. We also explore the translational potential of iPSC-based disease modeling combined with genome editing and high throughput drug screening platforms.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Variants of significance: medical genetics and surgical outcomes in congenital heart disease [J].
Geddes, Gabrielle C. ;
Przybylowski, Leon F., III ;
Ware, Stephanie M. .
CURRENT OPINION IN PEDIATRICS, 2020, 32 (06) :730-738
[32]   Advancements and Challenges in Contemporizing Care for Adult Patients with Congenital Heart Disease and Advanced Heart Failure: An Update on Application of Modern Heart Failure Technologies [J].
Saef, Josh ;
Scandinaro, Anna ;
Montgomery, Robert ;
Sundaravel, Swethika ;
Weinreb, Scott ;
Dodeja, Anudeep ;
Lal, Rayhan A. ;
Patsias, Iani ;
Gosain, Priyanka ;
Castro, Miguel ;
Joseph, Namita ;
Martinez, Mariella Velez ;
Laczko, Courtney ;
Kefalas, Marea ;
Vaikunth, Sumeet ;
Roth, Todd Stuart .
CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE, 2025, 27 (01)
[33]   The Application of an Anatomical Database for Fetal Congenital Heart Disease [J].
Yang Li ;
Pei QiuYan ;
Li YunTao ;
Yang ZhenJuan .
中华医学杂志英文版, 2015, 128 (19) :2583-2587
[34]   The Application of an Anatomical Database for Fetal Congenital Heart Disease [J].
Yang, Li ;
Pei, Qiu-Yan ;
Li, Yun-Tao ;
Yang, Zhen-Juan .
CHINESE MEDICAL JOURNAL, 2015, 128 (19) :2583-2587
[35]   Machine learning-based prediction of mortality after heart transplantation in adults with congenital heart disease: A UNOS database analysis [J].
Kampaktsis, Polydoros N. ;
Siouras, Athanasios ;
Doulamis, Ilias P. ;
Moustakidis, Serafeim ;
Emfietzoglou, Maria ;
Van den Eynde, Jef ;
Avgerinos, Dimitrios, V ;
Giannakoulas, George ;
Alvarez, Paulino ;
Briasoulis, Alexandros .
CLINICAL TRANSPLANTATION, 2023, 37 (01)
[36]   The Role of Genetics in Congenital Heart Disease-Associated Pulmonary Arterial Hypertension [J].
Canbeyli, Fatma Hayvaci ;
Secgen, Kazim ;
Ezgu, Fatih Suheyl ;
Tacoy, Gulten ;
Unlu, Serkan ;
Arabaci, Hidayet Ozan ;
Pektas, Ayhan ;
Inci, Asli ;
Kaya, Ergun Baris ;
Sinan, Umit Yasar ;
Kucukoglu, Mehmet Serdar ;
Kula, Serdar .
PEDIATRIC CARDIOLOGY, 2025,
[37]   The genetics of congenital heart disease ... understanding and improving long-term outcomes in congenital heart disease: a review for the general cardiologist and primary care physician [J].
Simmons, M. Abigail ;
Brueckner, Martina .
CURRENT OPINION IN PEDIATRICS, 2017, 29 (05) :520-528
[38]   Machine Learning Model for Predicting Risk of In-Hospital Mortality after Surgery in Congenital Heart Disease Patients [J].
Du, Xinwei ;
Wang, Hao ;
Wang, Shunmin ;
He, Yi ;
Zheng, Jinghao ;
Zhang, Haibo ;
Hao, Zedong ;
Chen, Yiwei ;
Xu, Zhiwei ;
Lu, Zhaohui .
REVIEWS IN CARDIOVASCULAR MEDICINE, 2022, 23 (11)
[39]   Tell me once, tell me soon: parents' preferences for clinical genetics services for congenital heart disease [J].
Kasparian, Nadine A. ;
Lourenco, Richard De Abreu ;
Winlaw, David S. ;
Sholler, Gary F. ;
Viney, Rosalie ;
Kirk, Edwin P. E. .
GENETICS IN MEDICINE, 2018, 20 (11) :1387-1395
[40]   Application of high-throughput sequencing for studying genomic variations in congenital heart disease [J].
Dorn, Cornelia ;
Grunert, Marcel ;
Sperling, Silke R. .
BRIEFINGS IN FUNCTIONAL GENOMICS, 2014, 13 (01) :51-65