Modeling discontinuous potential distributions using the finite volume method, and application to liquid metal batteries

被引:22
作者
Weber, Norbert [1 ,2 ]
Landgraf, Steffen [1 ]
Mushtaq, Kashif [2 ,3 ,4 ]
Nimtz, Michael [1 ]
Personnettaz, Paolo [1 ]
Weier, Tom [1 ]
Zhao, Ji [2 ]
Sadoway, Donald [2 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Bautzner Landstr 400, D-01328 Dresden, Germany
[2] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Univ Porto, Fac Engn, Dept Chem Engn, LEPABE, Porto, Portugal
[4] Natl Univ Sci & Technol, Sch Mech & Mfg Engn, Dept Mech Engn, Islamabad, Pakistan
关键词
Potential distribution; Current distribution; Internal boundary; Internal jump; OpenFOAM; Finite volume method; Liquid metal battery; ELECTRO-VORTEX FLOW; DRIVEN CONVECTION; DIFFERENCE METHOD; FUEL-CELLS; SECONDARY; DESIGN; MULTIREGION; SIMULATION; TRANSPORT;
D O I
10.1016/j.electacta.2019.06.085
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrical potential in a battery jumps at each electrode-electrolyte interface. We present a model for computing three-dimensional current and potential distributions, which accounts for such internal voltage jumps. Within the framework of the finite volume method we discretize the Laplace and gradient operators such that they account for internal jump boundary conditions. After implementing a simple battery model in OpenFOAM we validate it using an analytical test case, and show its capabilities by simulating the current distribution and discharge curve of a Li parallel to Bi liquid metal battery. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:857 / 864
页数:8
相关论文
共 82 条
[11]   Mathematical modeling of secondary lithium batteries [J].
Botte, GG ;
Subramanian, VR ;
White, RE .
ELECTROCHIMICA ACTA, 2000, 45 (15-16) :2595-2609
[12]   Current and potential distribution in electrochemical reactors with activated or resistive electrodes. A multiregion and open source approach [J].
Colli, A. N. ;
Bisang, J. M. .
ELECTROCHIMICA ACTA, 2018, 290 :676-685
[13]   Compact and General Strategy for Solving Current and Potential Distribution in Electrochemical Cells Composed of Massive Monopolar and Bipolar Electrodes [J].
Colli, A. N. ;
Girault, H. H. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (11) :E3465-E3472
[14]   CALCULATION OF CURRENT DISTRIBUTION AND ELECTRODE SHAPE CHANGE BY THE BOUNDARY ELEMENT METHOD [J].
DECONINCK, J ;
MAGGETTO, G ;
VEREECKEN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (12) :2960-2965
[15]   On the Discretization of the Diffusion Term in Finite-Volume Continuum Mechanics [J].
Demirdzic, I. .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2015, 68 (01) :1-10
[16]   SECONDARY CURRENT DISTRIBUTIONS USING TOPAZ2D AND LINEAR KINETICS [J].
DIMPAULTDARCY, EC ;
WHITE, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (03) :656-658
[17]   THE USE OF MATHEMATICAL-MODELING IN THE DESIGN OF LITHIUM POLYMER BATTERY SYSTEMS [J].
DOYLE, M ;
NEWMAN, J .
ELECTROCHIMICA ACTA, 1995, 40 (13-14) :2191-2196
[18]   COMPUTATION OF CURRENT DISTRIBUTION IN ELECTRODEPOSITION, A REVIEW [J].
DUKOVIC, JO .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1990, 34 (05) :693-705
[19]  
Euler J., 1960, ELECTROCHIM ACTA, V2, P268
[20]   MODIFICATION OF NEWMAN BAND(J) SUBROUTINE TO MULTIREGION SYSTEMS CONTAINING INTERIOR BOUNDARIES - MBAND [J].
FAN, D ;
WHITE, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) :1688-1691