NePTuNe: Neural Powered Tucker Network for Knowledge Graph Completion

被引:2
作者
Sonkar, Shashank [1 ]
Katiyar, Arzoo [2 ]
Baraniuk, Richard [1 ]
机构
[1] Rice Univ, Houston, TX 77251 USA
[2] Penn State Univ, University Pk, PA 16802 USA
来源
PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE GRAPHS (IJCKG 2021) | 2021年
关键词
knowledge graph completion; tucker decomposition; link prediction;
D O I
10.1145/3502223.3502249
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graphs link entities through relations to provide a structured representation of real world facts. However, they are often incomplete, because they are based on only a small fraction of all plausible facts. The task of knowledge graph completion via link prediction aims to overcome this challenge by inferring missing facts represented as links between entities. Current approaches to link prediction leverage tensor factorization and/or deep learning. Factorization methods train and deploy rapidly thanks to their small number of parameters but have limited expressiveness due to their underlying linear methodology. Deep learning methods are more expressive but also computationally expensive and prone to overfitting due to their large number of trainable parameters. We propose Neural Powered Tucker Network (NePTuNe), a new hybrid link prediction model that couples the expressiveness of deep models with the speed and size of linear models. We demonstrate that NePTuNe provides state-of-the-art performance on the FB15K-237 dataset and near state-of-the-art performance on the WN18RR dataset.
引用
收藏
页码:177 / 180
页数:4
相关论文
共 50 条
  • [21] Shared Embedding Based Neural Networks for Knowledge Graph Completion
    Guan, Saiping
    Jin, Xiaolong
    Wang, Yuanzhuo
    Cheng, Xueqi
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 247 - 256
  • [22] MPNet: temporal knowledge graph completion based on a multi-policy network
    Wang, Jingbin
    Wu, Renfei
    Wu, Yuwei
    Zhang, Fuyuan
    Zhang, Sirui
    Guo, Kun
    APPLIED INTELLIGENCE, 2024, 54 (03) : 2491 - 2507
  • [23] MPNet: temporal knowledge graph completion based on a multi-policy network
    Jingbin Wang
    RenFei Wu
    YuWei Wu
    FuYuan Zhang
    SiRui Zhang
    Kun Guo
    Applied Intelligence, 2024, 54 : 2491 - 2507
  • [24] An Improved Capsule Network-based Embedding Model for Knowledge Graph Completion
    Li, Jun
    Hou, Jie
    Zhou, Chunyu
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2247 - 2251
  • [25] A survey of inductive knowledge graph completion
    Liang, Xinyu
    Si, Guannan
    Li, Jianxin
    Tian, Pengxin
    An, Zhaoliang
    Zhou, Fengyu
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (08) : 3837 - 3858
  • [26] Graph Attention Network with Relational Dynamic Factual Fusion for Knowledge Graph Completion
    Yu, Mei
    Zuo, Yilin
    Zhang, Wenbin
    Zhao, Mankun
    Xu, Tianyi
    Zhao, Yue
    Guo, Jiujiang
    Yu, Jian
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT IV, ECML PKDD 2024, 2024, 14944 : 89 - 106
  • [27] Graph-aware tensor factorization convolutional network for knowledge graph completion
    Yuzhu Jin
    Liu Yang
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 1755 - 1766
  • [28] Graph-aware tensor factorization convolutional network for knowledge graph completion
    Jin, Yuzhu
    Yang, Liu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (05) : 1755 - 1766
  • [29] Relation Adversarial Network for Low Resource Knowledge Graph Completion
    Zhang, Ningyu
    Deng, Shumin
    Sun, Zhanlin
    Chen, Jiaoyan
    Zhang, Wei
    Chen, Huajun
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 1 - 12
  • [30] Twin Graph Attention Network with Evolution Pattern Learner for Few-Shot Temporal Knowledge Graph Completion
    Liang, Yi
    Zhao, Shuai
    Cheng, Bo
    Yang, Hao
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 234 - 246