NePTuNe: Neural Powered Tucker Network for Knowledge Graph Completion

被引:2
|
作者
Sonkar, Shashank [1 ]
Katiyar, Arzoo [2 ]
Baraniuk, Richard [1 ]
机构
[1] Rice Univ, Houston, TX 77251 USA
[2] Penn State Univ, University Pk, PA 16802 USA
来源
PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE GRAPHS (IJCKG 2021) | 2021年
关键词
knowledge graph completion; tucker decomposition; link prediction;
D O I
10.1145/3502223.3502249
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graphs link entities through relations to provide a structured representation of real world facts. However, they are often incomplete, because they are based on only a small fraction of all plausible facts. The task of knowledge graph completion via link prediction aims to overcome this challenge by inferring missing facts represented as links between entities. Current approaches to link prediction leverage tensor factorization and/or deep learning. Factorization methods train and deploy rapidly thanks to their small number of parameters but have limited expressiveness due to their underlying linear methodology. Deep learning methods are more expressive but also computationally expensive and prone to overfitting due to their large number of trainable parameters. We propose Neural Powered Tucker Network (NePTuNe), a new hybrid link prediction model that couples the expressiveness of deep models with the speed and size of linear models. We demonstrate that NePTuNe provides state-of-the-art performance on the FB15K-237 dataset and near state-of-the-art performance on the WN18RR dataset.
引用
收藏
页码:177 / 180
页数:4
相关论文
共 50 条
  • [1] An Overview of Research on Knowledge Graph Completion Based on Graph Neural Network
    Yue W.
    Haichun S.
    Data Analysis and Knowledge Discovery, 2024, 8 (03) : 10 - 28
  • [2] Disentangled Relational Graph Neural Network with Contrastive Learning for knowledge graph completion
    Yin, Hong
    Zhong, Jiang
    Li, Rongzhen
    Li, Xue
    KNOWLEDGE-BASED SYSTEMS, 2024, 295
  • [3] Tucker decomposition-based temporal knowledge graph completion
    Shao, Pengpeng
    Zhang, Dawei
    Yang, Guohua
    Tao, Jianhua
    Che, Feihu
    Liu, Tong
    KNOWLEDGE-BASED SYSTEMS, 2022, 238
  • [4] Knowledge graph completion based on graph contrastive attention network
    Liu D.
    Fang Q.
    Zhang X.
    Hu J.
    Qian S.
    Xu C.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (08): : 1428 - 1435
  • [5] Semantic- and relation-based graph neural network for knowledge graph completion
    Li, Xinlu
    Tian, Yujie
    Ji, Shengwei
    APPLIED INTELLIGENCE, 2024, 54 (08) : 6085 - 6107
  • [6] Learnable convolutional attention network for knowledge graph completion
    Shang, Bin
    Zhao, Yinliang
    Liu, Jun
    KNOWLEDGE-BASED SYSTEMS, 2024, 285
  • [7] Mixed-Curvature Multi-Relational Graph Neural Network for Knowledge Graph Completion
    Wang, Shen
    Wei, Xiaokai
    dos Santos, Cicero Nogueira
    Wang, Zhiguo
    Nallapati, Ramesh
    Arnold, Andrew
    Xiang, Bing
    Yu, Philip S.
    Cruz, Isabel F.
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 1761 - 1771
  • [8] Heterogeneous Graph Neural Network Knowledge Graph Completion Model Based on Improved Attention Mechanism
    Shi, Junkang
    Li, Ming
    Zhao, Jing
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT IV, 2023, 14257 : 423 - 434
  • [9] PRGNN: Modeling high-order proximity with relational graph neural network for knowledge graph completion
    Zhu, Danhao
    NEUROCOMPUTING, 2024, 594
  • [10] Hyperbolic hierarchical graph attention network for knowledge graph completion
    Xu, Hao
    Chen, Shudong
    Qi, Donglin
    Tong, Da
    Yu, Yong
    Chen, Shuai
    High Technology Letters, 2024, 30 (03) : 271 - 279