Elliptic curves in isogeny classes

被引:5
作者
Shparlinski, Igor E. [1 ]
Zhao, Liangyi [1 ]
机构
[1] Univ New South Wales, Dept Pure Math, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Elliptic curves; Isogeny classes; Class number; SQUARE MODULI; PRIME FIELD; LARGE SIEVE; POINTS; NUMBER;
D O I
10.1016/j.jnt.2018.04.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the distribution of elliptic curves in isogeny classes of curves with a given value of the Frobenius trace t becomes close to uniform even when t is averaged over very short intervals inside the Hasse-Weil interval. This result is based on a new form of the large sieve inequality for sparse sequences. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:194 / 212
页数:19
相关论文
共 13 条
  • [1] Baier S., 2006, J RAMANUJAN MATH SOC, V21, P279
  • [2] An improvement for the large sieve for square moduli
    Baier, Stephan
    Zhao, Liangyi
    [J]. JOURNAL OF NUMBER THEORY, 2008, 128 (01) : 154 - 174
  • [3] BIRCH BJ, 1968, J LONDON MATH SOC, V43, P57
  • [4] The number of fields generated by the square root of values of a given polynomial
    Cutter, P
    Granville, A
    Tucker, TJ
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (01): : 71 - 79
  • [5] Character sums in short intervals and the multiplication table modulo a large prime
    Garaev, MZ
    [J]. MONATSHEFTE FUR MATHEMATIK, 2006, 148 (02): : 127 - 138
  • [6] Iwaniec H., 2004, Colloquium Publications
  • [7] Jutila M., 1973, J. Number Theory, V5, P203
  • [8] FACTORING INTEGERS WITH ELLIPTIC-CURVES
    LENSTRA, HW
    [J]. ANNALS OF MATHEMATICS, 1987, 126 (03) : 649 - 673
  • [9] On quadratic fields generated by polynomials
    Luca, Florian
    Shparlinski, Igor E.
    [J]. ARCHIV DER MATHEMATIK, 2008, 91 (05) : 399 - 408
  • [10] Subtleties in the distribution of the numbers of points on elliptic curves over a finite prime field
    McKee, J
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 : 448 - 460