Restructuring of Hoeffding Trees for Trapezoidal Data Streams

被引:5
作者
Schreckenberger, Christian [1 ]
Glockner, Tim [1 ]
Stuckenschmidt, Heiner [1 ]
Bartelt, Christian [2 ]
机构
[1] Univ Mannheim, Inst Enterprise Syst, Mannheim, Germany
[2] Tech Univ Clausthal, Inst Software & Syst Engn, Clausthal Zellerfeld, Germany
来源
20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020) | 2020年
关键词
BIG DATA;
D O I
10.1109/ICDMW51313.2020.00064
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trapezoidal Data Streams are an emerging topic, where not only the data volume increases, but also the data dimension, i.e. new features emerge. In this paper, we address the challenges that arise from this problem by providing a novel approach to restructure and prune Hoeffding trees. We evaluate our approach on synthetic datasets, where we can show that the approach significantly improves the performance compared to the baseline of an adjusted Hoeffding tree algorithm without restructuring and pruning.
引用
收藏
页码:416 / 423
页数:8
相关论文
共 13 条
  • [1] Big data applications in operations/supply-chain management: A literature review
    Addo-Tenkorang, Richard
    Helo, Petri T.
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2016, 101 : 528 - 543
  • [2] Applications of big data to smart cities
    Al Nuaimi, Eiman
    Al Neyadi, Hind
    Mohamed, Nader
    Al-Jaroodi, Jameela
    [J]. JOURNAL OF INTERNET SERVICES AND APPLICATIONS, 2015, 6 : 1 - 15
  • [3] Scale Invariant Learning from Trapezoidal Data Streams
    Alagurajah, Jeevithan
    Yuan, Xu
    Wu, Xindong
    [J]. PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, : 505 - 508
  • [4] [Anonymous], OPTIMIZED VERY FAST, P8
  • [5] Domingos P., 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P71, DOI 10.1145/347090.347107
  • [6] Gama J. a., 2003, P ACM KDD, P523, DOI DOI 10.1145/956750.956813
  • [7] Hang Yang, 2011, Data Warehousing and Knowledge Discovery. Proceedings 13th International Conference, DaWaK 2011, P471, DOI 10.1007/978-3-642-23544-3_36
  • [9] Hulten G., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P97, DOI 10.1145/502512.502529
  • [10] Lior R, 2014, Data mining with decision trees: theory and applications