Multiplicative *-Lie type higher derivations of standard operator algebras

被引:6
|
作者
Wani, Bilal Ahmad [1 ]
Ashraf, Mohammad [1 ]
Akhtar, Mohd Shuaib [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
Multiplicative *-Lie-type derivation; multiplicative *-Lie-type higher derivation; standard operator algebra; MAPS; PRODUCT;
D O I
10.1080/00927872.2021.1906266
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a standard operator algebra on an infinite dimensional complex Hilbert space H containing identity operator I. Let p(n)(X-1, X-2, ... , X-n) be the polynomial defined by n indeterminates X1, ... , X-n and their multiple *-Lie products and N be the set of non-negative integers. In this paper, it is shown that if U is closed under the adjoint operation and D={d(m)}(m is an element of N) is the family of mappings d(m):U -> B(H) such that d(0)=id(U), the identity map on U satisfying d(m)(p(n)(U-1,U-2, ... ,U-n)) = Sigma(i1+i2+...+in=m) p(n)(d(i1)(U-1), d(i2)(U-2), ... , d(in)(U-n)) for all U-1,U-2, ... ,U-n is an element of U and for each m is an element of N, then D={d(m)}(m is an element of N) is an additive *-higher derivation. Moreover, D is inner.
引用
收藏
页码:3777 / 3797
页数:21
相关论文
共 50 条
  • [41] CHARACTERIZING LIE (ξ-LIE) DERIVATIONS ON TRIANGULAR ALGEBRAS BY LOCAL ACTIONS
    Qi, Xiaofei
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 816 - 835
  • [42] Multiplicative Lie n-derivations of triangular rings
    Benkovic, Dominik
    Eremita, Daniel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (11) : 4223 - 4240
  • [43] LIE-TYPE DERIVATIONS OF NEST ALGEBRAS ON BANACH SPACES AND RELATED TOPICS
    Wei, Feng
    Zhang, Yuhao
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 112 (03) : 391 - 430
  • [44] NONLINEAR LIE-TYPE DERIVATIONS OF VON NEUMANN ALGEBRAS AND RELATED TOPICS
    Fosner, Ajda
    Wei, Feng
    Xiao, Zhankui
    COLLOQUIUM MATHEMATICUM, 2013, 132 (01) : 53 - 71
  • [45] Characterization of nonlinear Lie type derivations on von Neumann algebras by local action
    Li, Changjing
    Zhang, Jingyi
    Liang, Yueliang
    Chen, Lin
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (09) : 3694 - 3710
  • [46] On derivations of subalgebras of real semisimple Lie algebras
    Ciatti, Paolo
    Cowling, Michael G.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (01) : 233 - 259
  • [47] Lie (Jordan) derivations of arbitrary triangular algebras
    Wang, Yu
    AEQUATIONES MATHEMATICAE, 2019, 93 (06) : 1221 - 1229
  • [48] Nonlinear generalized Lie derivations on triangular algebras
    Fei, Xiuhai
    Zhang, Jianhua
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (06) : 1158 - 1170
  • [49] On Generalized Derivations and Centralizers of Operator Algebras with Involution
    S. Ali
    A. Fošner
    W. Jing
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2018, 53 : 27 - 33
  • [50] On Generalized Derivations and Centralizers of Operator Algebras with Involution
    Ali, S.
    Fosner, A.
    Jing, W.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2018, 53 (01): : 27 - 33