Interactive Influences of Elevated Atmospheric CO2 and Temperature on Phosphorus Acquisition of Crops and its Availability in Soil: A Review

被引:10
|
作者
Guo, Lili [1 ,2 ]
Li, Yansheng [1 ]
Yu, Zhenhua [1 ]
Wu, Junjiang [3 ]
Jin, Jian [1 ,3 ,4 ]
Liu, Xiaobing [1 ,2 ]
机构
[1] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Key Lab Mollisols Agroecol, Harbin 150081, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Heilongjiang Acad Agr Sci, Soybean Res Inst, Minist Agr, Key Lab Soybean Cultivat, Harbin 150086, Peoples R China
[4] La Trobe Univ, Ctr AgriBiosci, Dept Anim Plant & Soil Sci, Melbourne Campus, Bundoora, Vic 3086, Australia
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Climate change; Crop nutrient; P demand; Soil P availability; Microbial and enzymes activities; TAIHU LAKE REGION; CARBON-DIOXIDE; WINTER-WHEAT; MICROBIAL ACTIVITIES; ENRICHMENT FACE; CLIMATE-CHANGE; GROWTH; NITROGEN; RICE; YIELD;
D O I
10.1007/s42106-021-00138-4
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Global climate change escalates the rise of atmospheric CO2 concentration and temperature, which impact crop production in agricultural ecosystems. As the second important macronutrient, phosphorus (P) fundamentally mediates the crop adaptability to climate change. An overview on previous work on crop P acquisition and soil P dynamics in responses to elevated CO2 and temperature would be critical for further advancing our knowledge on P cycling under climate change and its management to maintain agroecosystem sustainability. This review focuses on the effects of elevated CO2 and temperature on root morphology, root exudation, and associated biochemical properties in the rhizosphere in relevant to crop P acquisition and soil P availability. Studies indicate that elevated CO2 and temperature could increase P uptake of crops, such as rice and soybean when crops are grown within the range of optimal growth temperature. Elevated CO2 and temperature not only alter root exudates and changes the activity of soil enzymes and microbes the in rhizosphere environment, but also directly influence soil chemical and biochemical processes and thus the bioavailability of P. It is worth to focus on P-solubilizing microbial community composition, and microbial function on soil P mobilization in the rhizosphere of crops grown under climate change.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 50 条
  • [41] Vulnerability of lodging risk to elevated CO2 and increased soil temperature differs between rice cultivars
    Zhu, Chunwu
    Ziska, Lewis H.
    Sakai, Hidemitsu
    Zhu, Jianguo
    Hasegawa, Toshihiro
    EUROPEAN JOURNAL OF AGRONOMY, 2013, 46 : 20 - 24
  • [42] Plant-soil interactions and nutrient availability determine the impact of elevated CO2 and temperature on cotton productivity
    Yui Osanai
    David T. Tissue
    Michael P. Bange
    Ian C. Anderson
    Michael V. Braunack
    Brajesh K. Singh
    Plant and Soil, 2017, 410 : 87 - 102
  • [43] ABOVEGROUND AND BELOWGROUND RESPONSE OF POPULUS GRANDIDENTATA TO ELEVATED ATMOSPHERIC CO2 AND SOIL N-AVAILABILITY
    CURTIS, PS
    ZAK, DR
    PREGITZER, KS
    TEERI, JA
    PLANT AND SOIL, 1994, 165 (01) : 45 - 51
  • [44] Interactive Effects of Elevated Atmospheric CO2 and Waterlogging on Vegetative Growth of Soybean (Glycine max (L.) Merr.)
    Shimono, Hiroyuki
    Konno, Tomohiro
    Sakai, Hidemitsu
    Sameshima, Ryoji
    PLANT PRODUCTION SCIENCE, 2012, 15 (03) : 238 - 245
  • [45] Trade-offs on carbon and nitrogen availability lead to only a minor effect of elevated CO2 on potential denitrification in soil
    Liu, Can
    Bol, Roland
    Ju, Xiaotang
    Tian, Jing
    Wu, Di
    SOIL BIOLOGY & BIOCHEMISTRY, 2023, 176
  • [46] Interactive effects of elevated CO2, temperature and nitrogen on photosynthesis of wheat grown under temperature gradient tunnels
    Martínez-Carrasco, R
    Pérez, P
    Morcuende, R
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2005, 54 (01) : 49 - 59
  • [47] Simulation of the effects of genotype and N availability on rice growth and yield response to an elevated atmospheric CO2 concentration
    Yoshida, Hiroe
    Horie, Takeshi
    Nakazono, Kou
    Ohno, Hiroyuki
    Nakagawa, Hiroshi
    FIELD CROPS RESEARCH, 2011, 124 (03) : 433 - 440
  • [48] Response of rice yield traits to elevated atmospheric CO2 concentration and its interaction with cultivar, nitrogen application rate and temperature: A meta-analysis of 20 years FACE studies
    Hu, Shaowu
    Wang, Yunxia
    Yang, Lianxin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 764
  • [49] White lupin (Lupinus albus L.) exposed to elevated atmospheric CO2 requires additional phosphorus for N2 fixation
    O'Sullivan, James B.
    Jin, Jian
    Tang, Caixian
    PLANT AND SOIL, 2022, 476 (1-2) : 477 - 490
  • [50] Interactive effects of elevated temperature and CO2 on foraging behavior of juvenile coral reef fish
    Nowicki, Jessica P.
    Miller, Gabrielle M.
    Munday, Philip L.
    JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY, 2012, 412 : 46 - 51