Towards fully discretized differential inclusions

被引:28
作者
Grammel, G [1 ]
机构
[1] Tech Univ Munich, Ctr Math, D-80290 Munich, Germany
来源
SET-VALUED ANALYSIS | 2003年 / 11卷 / 01期
关键词
differential inclusion; Euler scheme; extremal point;
D O I
10.1023/A:1021981217050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Euler schemes for the calculation of the solution set for a differential inclusion are investigated. Under Lipschitz and convexity conditions on the set-valued map the usual O(h)-approximation, h denoting the time step, is preserved, if one uses only boundary points in each step. An O(rooth) approximation is achieved, if one uses only extremal points. So, in case that the extremal sets are finite, a full discretization of the differential inclusion is performed.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 13 条
[1]  
ARTSTEIN Z, 1994, SET-VALUED ANAL, V2, P7
[2]  
Aubin JP., 1991, Viability Theory
[3]   A GENERALIZATION OF CARATHEODORYS THEOREM [J].
BARANY, I .
DISCRETE MATHEMATICS, 1982, 40 (2-3) :141-152
[4]   Stability and Euler approximation of one-sided Lipschitz differential inclusions [J].
Donchev, T ;
Farkhi, E .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (02) :780-796
[5]   DIFFERENCE-METHODS FOR DIFFERENTIAL-INCLUSIONS - A SURVEY [J].
DONTCHEV, A ;
LEMPIO, F .
SIAM REVIEW, 1992, 34 (02) :263-294
[6]   ERROR-ESTIMATES FOR DISCRETIZED DIFFERENTIAL-INCLUSIONS [J].
DONTCHEV, AL ;
FARKHI, EM .
COMPUTING, 1989, 41 (04) :349-358
[7]  
Filippov AF., 1967, SIAM J CONTROL, V5, P609, DOI DOI 10.1137/0305040
[8]   Limits of nonlinear discrete-time control systems with fast subsystems [J].
Grammel, G .
SYSTEMS & CONTROL LETTERS, 1999, 36 (04) :277-283
[9]  
HAECKL G, 1993, RANDOM COMPUT DYNAMI, V1, P371
[10]  
HAECKL G, 1996, THESIS AUGSBURGER MA