Anodization is an effective surface treatment for improving the corrosion resistance of aluminium-matrix composites. For SiC particle-filled aluminium, anodization was performed successfully in an acid electrolyte, as usual. However, for AlN particle-filled aluminium, anodization needed to be performed in an akaline (0.7 N NaOH) electrolyte instead of an acid electrolyte, because NaOH reduced the reaction between AIN and water, whereas an acid enhanced this reaction. The concentration of NaOH in the electrolyte was critical; too high a concentration of NaOH caused the dissolution of the anodizing product (Al2O3) by the NaOH, whereas too low a concentration of NaOH did not provide sufficient ions for the electrochemical process. The corrosion properties and anodization characteristic of pure aluminium, Al/AlN and Al/SiC were compared. Without anodization, pure aluminium had better corrosion resistance than the composites and Al/SiC had better corrosion resistance than Al/AlN. After anodization, the corrosion resistance of Al/AlN was better than Al/SiC and both composites were better than pure aluminium without anodization, but still not as good as the anodized pure aluminium.