On the 2m-th power mean of Dirichlet L-functions with the weight of trigonometric sums

被引:6
作者
Ma, Rong [1 ]
Zhang, Junhuai [1 ]
Zhang, Yulong [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Shaanxi, Peoples R China
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2009年 / 119卷 / 04期
关键词
Dirichlet L-functions; trigonometric sums; congruence equation; asymptotic formula; EXPONENTIAL-SUMS;
D O I
10.1007/s12044-009-0046-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime, chi denote the Dirichlet character modulo p, f (x) = a(0) + a(1)x + ... + a(k)x(k) is a k-degree polynomial with integral coefficients such that (p, a(0), a(1),...,a(k)) = 1, for any integer m, we study the asymptotic property of Sigma(chi not equal chi 0)vertical bar Sigma(p-1)(a=1)chi(a)e (f(a)/p)vertical bar(2) vertical bar L(1,chi)vertical bar(2m), where e(y) = e(2 pi iy). The main purpose is to use the analytic method to study the 2m-th power mean of Dirichlet L-functions with the weight of the general trigonometric sums and give an interesting asymptotic formula. This result is an extension of the previous results.
引用
收藏
页码:411 / 421
页数:11
相关论文
共 15 条
[1]   BOUNDS FOR EXPONENTIAL SUMS [J].
CARLITZ, L ;
UCHIYAMA, S .
DUKE MATHEMATICAL JOURNAL, 1957, 24 (01) :37-41
[2]  
Davenport H, 1933, J REINE ANGEW MATH, V169, P158
[3]  
GLYN H, 2004, Q J MATH, V55, P307
[4]  
Hua L.-K., 1940, J. Chinese Math. Soc, V2, P301
[5]   ON EXPONENTIAL SUMS OVER AN ALGEBRAIC NUMBER FIELD [J].
HUA, LK .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1951, 3 (01) :44-51
[6]  
HUA LK, 1942, SCI REC, V1, P23
[7]  
MIN SH, 1947, QUART J MATH OXFORD, V18, P133
[8]  
Mordell L.J., 1932, Q J MATH, V3, P161, DOI 10.1093/qmath/os-3.1.161
[9]  
Pan C. D., 1991, ELEMENT ANAL NUMBER
[10]  
REN G, 2003, PURE APPL MATH, V19, P23