Extending DNA-Based Molecular Photonic Wires with Homogeneous Forster Resonance Energy Transfer

被引:46
作者
Diaz, Sebastian A. [1 ]
Buckhout-White, Susan [1 ]
Ancona, Mario G. [2 ]
Spillmann, Christopher M. [1 ]
Goldman, Ellen R. [1 ]
Melinger, Joseph S. [2 ]
Medintz, Igor L. [1 ]
机构
[1] US Navy, Res Lab, Ctr Bio Mol Sci & Engn, Code 6900, Washington, DC 20375 USA
[2] US Navy, Res Lab, Div Elect Sci & Technol, Code 6800, Washington, DC 20375 USA
来源
ADVANCED OPTICAL MATERIALS | 2016年 / 4卷 / 03期
关键词
DNA nanostructures; homogeneous FRET; FRET; molecular photonic wires; PYRENE-PERYLENE; NUCLEIC-ACIDS; WAVE-GUIDES; FRET PAIRS; FLUORESCENCE; ASSEMBLIES; SCAFFOLDS; TRANSPORT; COMPLEX; RELAYS;
D O I
10.1002/adom.201500554
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Molecular photonic wires (MPWs) precisely position dyes using structural DNA methodologies where they exploit Forster resonance energy transfer (FRET) to direct photonic energy over nm distances with potential applications in light harvesting, biosensing, and molecular electronics. Although versatile, the number of donor-acceptor dye pairs available and the downhill nature of FRET combine to limit the size and efficiency of current MPWs. HomoFRET between identical dyes should provide zero energy loss but at the cost of random transfer directionality. Here, it has been investigated what HomoFRET has to offer as a means to extend MPWs. Steady-state-, lifetime-, and fluorescence anisotropy measurements along with mathematical models are utilized to experimentally examine various 3-, 4-, and 5-dye MPW constructs containing from 1 to 6 HomoFRET repeat sections. Results show that HomoFRET can be extended up to 6 repeat dyes/5 steps with only a approximate to 55% energy transfer efficiency decrease while doubling the longest MPW length to a remarkable 30 nm. Critically, analogous constructs lacking the HomoFRET portion are unable to deliver any energy over the same lengths. Even with nondirectionality, the introduction of a repeated-optimized HomoFRET transfer dye is preferable compared to additional less efficient dye species. HomoFRET further provides the benefit of having a higher energy output.
引用
收藏
页码:399 / 412
页数:14
相关论文
共 58 条
[1]   Functionalized DNA nanostructures for light harvesting and charge separation [J].
Albinsson, Bo ;
Hannestad, Jonas K. ;
Boerjesson, Karl .
COORDINATION CHEMISTRY REVIEWS, 2012, 256 (21-22) :2399-2413
[2]   A tunable FRET circuit for engineering fluorescent biosensors [J].
Allen, Michael D. ;
Zhang, Jin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (03) :500-502
[3]   Weakly coupled molecular photonic wires: Synthesis and excited-state energy-transfer dynamics [J].
Ambroise, A ;
Kirmaier, C ;
Wagner, RW ;
Loewe, RS ;
Bocian, DF ;
Holten, D ;
Lindsey, JS .
JOURNAL OF ORGANIC CHEMISTRY, 2002, 67 (11) :3811-3826
[4]   Branched DNA nanostructures efficiently stabilised and monitored by novel pyrene-perylene 2′-α-L-amino-LNA FRET pairs [J].
Astakhova, I. Kira ;
Kumar, T. Santhosh ;
Campbell, Meghan A. ;
Ustinov, Alexey V. ;
Korshun, Vladimir A. ;
Wengel, Jesper .
CHEMICAL COMMUNICATIONS, 2013, 49 (05) :511-513
[5]   Self-Assembled Quantum Dot-Sensitized Multivalent DNA Photonic Wires [J].
Boeneman, Kelly ;
Prasuhn, Duane E. ;
Blanco-Canosa, Juan B. ;
Dawson, Philip E. ;
Melinger, Joseph S. ;
Ancona, Mario ;
Stewart, Michael H. ;
Susumu, Kimihiro ;
Huston, Alan ;
Medintz, Igor L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (51) :18177-18190
[6]   Assembling programmable FRET-based photonic networks using designer DNA scaffolds [J].
Buckhout-White, Susan ;
Spillmann, Christopher M. ;
Algar, W. Russ ;
Khachatrian, Ani ;
Melinger, Joseph S. ;
Goldman, Ellen R. ;
Ancona, Mario G. ;
Medintz, Igor L. .
NATURE COMMUNICATIONS, 2014, 5
[7]   A triangular three-dye DNA switch capable of reconfigurable molecular logic [J].
Buckhout-White, Susan ;
Claussen, Jonathan C. ;
Melinger, Joseph S. ;
Dunningham, Zaire ;
Ancona, Mario G. ;
Goldman, Ellen R. ;
Medintz, Igor L. .
RSC ADVANCES, 2014, 4 (90) :48860-48871
[8]   Multimodal Characterization of a Linear DNA-Based Nanostructure [J].
Buckhout-White, Susan ;
Ancona, Mario ;
Oh, Eunkeu ;
Deschamps, Jeffrey R. ;
Stewart, Michael H. ;
Blanco-Canosa, Juan B. ;
Dawson, Philip E. ;
Goldman, Ellen R. ;
Medintz, Igor L. .
ACS NANO, 2012, 6 (02) :1026-1043
[9]   Nanochannels: Hosts for the Supramolecular Organization of Molecules and Complexes [J].
Calzaferri, Gion .
LANGMUIR, 2012, 28 (15) :6216-6231
[10]   Complex Logic Functions Implemented with Quantum Dot Bionanophotonic Circuits [J].
Claussen, Jonathan C. ;
Hildebrandt, Niko ;
Susumu, Kimihiro ;
Ancona, Mario G. ;
Medintz, Igor L. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (06) :3771-3778