Terrestrial Laser Scanning for Vegetation Analyses with a Special Focus on Savannas

被引:23
作者
Muumbe, Tasiyiwa Priscilla [1 ]
Baade, Jussi [2 ]
Singh, Jenia [3 ]
Schmullius, Christiane [1 ]
Thau, Christian [1 ,4 ]
机构
[1] Friedrich Schiller Univ Jena, Dept Earth Observat, D-07743 Jena, Germany
[2] Friedrich Schiller Univ Jena, Dept Phys Geog, D-07743 Jena, Germany
[3] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[4] Jena City Adm, Dept Urban Dev & Environm, D-07743 Jena, Germany
关键词
terrestrial laser scanning (TLS); savanna; Above Ground Biomass (AGB); 3D point cloud; vegetation structure; LEAF-AREA INDEX; WAVE-FORM LIDAR; ABOVEGROUND BIOMASS; AFRICAN SAVANNAS; TROPICAL FOREST; AIRBORNE LIDAR; TREE MODELS; STEM RECONSTRUCTION; POINT CLOUDS; WOODLAND;
D O I
10.3390/rs13030507
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Savannas are heterogeneous ecosystems, composed of varied spatial combinations and proportions of woody and herbaceous vegetation. Most field-based inventory and remote sensing methods fail to account for the lower stratum vegetation (i.e., shrubs and grasses), and are thus underrepresenting the carbon storage potential of savanna ecosystems. For detailed analyses at the local scale, Terrestrial Laser Scanning (TLS) has proven to be a promising remote sensing technology over the past decade. Accordingly, several review articles already exist on the use of TLS for characterizing 3D vegetation structure. However, a gap exists on the spatial concentrations of TLS studies according to biome for accurate vegetation structure estimation. A comprehensive review was conducted through a meta-analysis of 113 relevant research articles using 18 attributes. The review covered a range of aspects, including the global distribution of TLS studies, parameters retrieved from TLS point clouds and retrieval methods. The review also examined the relationship between the TLS retrieval method and the overall accuracy in parameter extraction. To date, TLS has mainly been used to characterize vegetation in temperate, boreal/taiga and tropical forests, with only little emphasis on savannas. TLS studies in the savanna focused on the extraction of very few vegetation parameters (e.g., DBH and height) and did not consider the shrub contribution to the overall Above Ground Biomass (AGB). Future work should therefore focus on developing new and adjusting existing algorithms for vegetation parameter extraction in the savanna biome, improving predictive AGB models through 3D reconstructions of savanna trees and shrubs as well as quantifying AGB change through the application of multi-temporal TLS. The integration of data from various sources and platforms e.g., TLS with airborne LiDAR is recommended for improved vegetation parameter extraction (including AGB) at larger spatial scales. The review highlights the huge potential of TLS for accurate savanna vegetation extraction by discussing TLS opportunities, challenges and potential future research in the savanna biome.
引用
收藏
页码:1 / 31
页数:28
相关论文
共 197 条
[1]   Automatic Detection and Parameter Estimation of Trees for Forest Inventory Applications Using 3D Terrestrial LiDAR [J].
Aijazi, Ahmad K. ;
Checchin, Paul ;
Malaterre, Laurent ;
Trassoudaine, Laurent .
REMOTE SENSING, 2017, 9 (09)
[2]   Non-intersecting leaf insertion algorithm for tree structure models [J].
Akerblom, Markku ;
Raumonen, Pasi ;
Casella, Eric ;
Disney, Mathias I. ;
Danson, F. Mark ;
Gaulton, Rachel ;
Schofield, Lucy A. ;
Kaasalainen, Mikko .
INTERFACE FOCUS, 2018, 8 (02)
[3]   Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial lidar and machine learning [J].
Anderson, Kyle E. ;
Glenn, Nancy F. ;
Spaete, Lucas P. ;
Shinneman, Douglas J. ;
Pilliod, David S. ;
Arkle, Robert S. ;
McIlroy, Susan K. ;
Derryberry, DeWayne R. .
ECOLOGICAL INDICATORS, 2018, 84 :793-802
[4]  
[Anonymous], 2018, R R PROJ STAT COMP
[5]  
[Anonymous], 2020, MATLAB MATHWORKS MAT
[6]  
[Anonymous], 2010, ECOSYSTEM FUNCTION S
[7]  
[Anonymous], 2015, P SILVILASER
[8]   Semi-direct tree reconstruction using terrestrial LiDAR point cloud data [J].
Bailey, Brian N. ;
Ochoa, Miguel H. .
REMOTE SENSING OF ENVIRONMENT, 2018, 208 :133-144
[9]   Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning [J].
Bauwens, Sebastien ;
Bartholomeus, Harm ;
Calders, Kim ;
Lejeune, Philippe .
FORESTS, 2016, 7 (06)
[10]   Integrating Airborne LiDAR and Terrestrial Laser Scanner forest parameters for accurate above-ground biomass/carbon estimation in Ayer Hitam tropical forest, Malaysia [J].
Bazezew, Muluken N. ;
Hussin, Yousif A. ;
Kloosterman, E. H. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 73 :638-652