Super edge-magic labeling of accordion and bracelet graphs

被引:0
作者
Baig, A. Q. [1 ]
Afzal, Hafiz U. [2 ]
Imran, M. [3 ]
Bashir, M. S. [4 ]
Qureshi, R. J. [4 ]
机构
[1] COMSATS Inst Informat Technol, Dept Math, Attock Campus, Islamabad, Pakistan
[2] Govt Coll Univ, Dept Math, Lahore, Pakistan
[3] Natl Univ Sci & Technol, Ctr Adv Math & Phys, Sect H-12, Islamabad, Pakistan
[4] Comsats Inst Informat Technol, Dept Comp Sci, Lahore Campus, Lahore, Pakistan
关键词
edge-magic labeling; super edge-magic labeling; accordion graph; bracelet graph;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a finite, simple and undirected graph with vertex set V (G) and edge set E(G). Graph G is called edge -magic if there exists a bijective function f, f : V(G) U E(G)->{1, 2,..., vertical bar V (G)vertical bar+ vertical bar E(G)vertical bar} such that f (u)+ f (uv) f (v) is a constant for each edge uv is an element of E(G). An edge-magic labeling f is called super edge -magic if the vertices are labeled with the smallest possible numbers. In this paper, we are dealing with the super edge -magic labeling of accordion and bracelet graphs.
引用
收藏
页码:283 / 297
页数:15
相关论文
共 13 条
  • [1] [Anonymous], PREPRINT
  • [2] [Anonymous], 2006, THESIS
  • [3] [Anonymous], B I COMBIN APPL
  • [4] Enomoto H., 1998, SUT J MATH, V34, P105
  • [5] Figueroa-Centeno RM, 2005, AUSTRALAS J COMB, V32, P225
  • [6] The place of super edge-magic labelings among other classes of labelings
    Figueroa-Centeno, RM
    Ichishima, R
    Muntaner-Batle, FA
    [J]. DISCRETE MATHEMATICS, 2001, 231 (1-3) : 153 - 168
  • [7] Fukuchi Y, 2001, ARS COMBINATORIA, V59, P253
  • [8] MAGIC VALUATIONS OF FINITE GRAPHS
    KOTZIG, A
    ROSA, A
    [J]. CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (04): : 451 - &
  • [9] Kotzig A., 1972, MAGIC VALUATION COMP
  • [10] RINGEL G, 1996, B ICA, V18, P83