CNN-based Fault Diagnosis of High-speed Train with Imbalance Data: A Comparison Study

被引:0
|
作者
Wu, Yunpu [1 ]
Jin, Weidong [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Elect Engn, Chengdu 611756, Peoples R China
来源
PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC) | 2019年
关键词
Imbalanced data; Fault Diagnosis; High-Speed Train; Convolutional Neural Networks;
D O I
10.23919/chicc.2019.8866182
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High-speed train bogie, the only component connecting the train body and track, its degradation and fault would directly threaten the safety of the vehicle. However, learning-based fault diagnosis methods are faced with imbalanced between normal samples and fault samples, which would lead to poor diagnosis performance. This paper provides a fault diagnosis architecture for high-speed train based on convolutional neural network, and critical comparison between three representative class balancing techniques, including weighted loss, focal loss, and synthetic minority over-sampling technique. The innovation of this study is concerning the judiciously chosen class balancing methods for neutral-network-based fault diagnosis of high-speed train. Based on the experiment results of this comparison study, it is found that class balancing method can significantly improve the performance of the developed diagnosis model, and synthetic minority over-sampling technique is more effective than two other approaches. This study is valuable for the further research and practical applications of fault diagnosis.
引用
收藏
页码:5053 / 5058
页数:6
相关论文
共 50 条
  • [31] Fault Diagnosis of High-speed Train Bogie Based on Spectrogram and Multi-channel Voting
    Su, Liyuan
    Ma, Lei
    Qin, Na
    Huang, Deqing
    Kemp, Andrew
    PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 22 - 26
  • [32] A Novel Fault Diagnosis Method of High-Speed Train Based on Few-Shot Learning
    Wu, Yunpu
    Chen, Jianhua
    Lei, Xia
    Jin, Weidong
    ENTROPY, 2024, 26 (05)
  • [33] Intelligent fault diagnosis of rolling bearing based on novel CNN model considering data imbalance
    Xing, Ziyang
    Zhao, Rongzhen
    Wu, Yaochun
    He, Tianjing
    APPLIED INTELLIGENCE, 2022, 52 (14) : 16281 - 16293
  • [34] Fault diagnosis of wheelset bearing of high-speed train based on EEMD and parameter adaptive VMD
    Li C.
    Liao Y.
    Liu Y.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (01): : 68 - 77
  • [35] Research Of High-Speed Train Fault Diagnosis System Based On Multi-Agent Platform
    Fang Bin
    Feng XiaoFeng
    Xu Shuo
    2018 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION (ICICTA 2018), 2018, : 237 - 241
  • [36] 1D Convolutional Neural Networks For Fault Diagnosis of High-speed Train Bogie
    Liang, Kaiwei
    Qin, Na
    Huang, Deqing
    Ma, Lei
    Fu, Yuanzhe
    Chen, Chunrong
    2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,
  • [37] Fault Diagnosis of Multi-Railway High-Speed Train Bogies by Improved Federated Learning
    Qin, Na
    Du, Jiahao
    Zhang, Yiming
    Huang, Deqing
    Wu, Bi
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (06) : 7184 - 7194
  • [38] Separable Convolutional Network-Based Fault Diagnosis for High-Speed Train: A Gossip Strategy-Based Optimization Approach
    Xue, Yihao
    Yang, Rui
    Chen, Xiaohan
    Song, Baoye
    Wang, Zidong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (01) : 307 - 316
  • [39] An Adaptive Multisensor Fault Diagnosis Method for High-Speed Train Traction Converters
    Dong, Honghui
    Chen, Fuzhao
    Wang, Zhipeng
    Jia, Limin
    Qin, Yong
    Man, Jie
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (06) : 6288 - 6302
  • [40] Fault Diagnosis of High-Speed Train Bogie by Residual-Squeeze Net
    Su, Liyuan
    Ma, Lei
    Qin, Na
    Huang, Deqing
    Kemp, Andrew H.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (07) : 3856 - 3863