CNN-based Fault Diagnosis of High-speed Train with Imbalance Data: A Comparison Study

被引:0
作者
Wu, Yunpu [1 ]
Jin, Weidong [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Elect Engn, Chengdu 611756, Peoples R China
来源
PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC) | 2019年
关键词
Imbalanced data; Fault Diagnosis; High-Speed Train; Convolutional Neural Networks;
D O I
10.23919/chicc.2019.8866182
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High-speed train bogie, the only component connecting the train body and track, its degradation and fault would directly threaten the safety of the vehicle. However, learning-based fault diagnosis methods are faced with imbalanced between normal samples and fault samples, which would lead to poor diagnosis performance. This paper provides a fault diagnosis architecture for high-speed train based on convolutional neural network, and critical comparison between three representative class balancing techniques, including weighted loss, focal loss, and synthetic minority over-sampling technique. The innovation of this study is concerning the judiciously chosen class balancing methods for neutral-network-based fault diagnosis of high-speed train. Based on the experiment results of this comparison study, it is found that class balancing method can significantly improve the performance of the developed diagnosis model, and synthetic minority over-sampling technique is more effective than two other approaches. This study is valuable for the further research and practical applications of fault diagnosis.
引用
收藏
页码:5053 / 5058
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 2017, Deep Learning: A Practitioners Approach
[2]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[3]   Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis [J].
Chen, Dongyue ;
Lin, Jianhui ;
Li, Yanping .
JOURNAL OF SOUND AND VIBRATION, 2018, 424 :192-207
[4]  
Chen H., 2018, IEEE T INTELLIGENT T
[5]  
Chen H., 2017, MATH PROBLEMS ENG
[6]   SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary [J].
Fernandez, Alberto ;
Garcia, Salvador ;
Herrera, Francisco ;
Chawla, Nitesh V. .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2018, 61 :863-905
[7]   Learning from class-imbalanced data: Review of methods and applications [J].
Guo Haixiang ;
Li Yijing ;
Shang, Jennifer ;
Gu Mingyun ;
Huang Yuanyue ;
Bing, Gong .
EXPERT SYSTEMS WITH APPLICATIONS, 2017, 73 :220-239
[8]   Learning from Imbalanced Data [J].
He, Haibo ;
Garcia, Edwardo A. .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (09) :1263-1284
[9]   Intelligent Fault Diagnosis of the High-Speed Train With Big Data Based on Deep Neural Networks [J].
Hu, Hexuan ;
Tang, Bo ;
Gong, Xuejiao ;
Wei, Wei ;
Wang, Huihui .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (04) :2106-2116
[10]  
[靳行 Jin Hang], 2018, [西南交通大学学报, Journal of Southwest Jiaotong University], V53, P359