NONPARAMETRIC INFERENCE FOR MARKOV PROCESSES WITH MISSING ABSORBING STATE

被引:12
作者
Bakoyannis, Giorgos [1 ,2 ]
Zhang, Ying [1 ,2 ]
Yiannoutsos, Constantin T. [1 ,2 ]
机构
[1] Indiana Univ, Bloomington, IN 47405 USA
[2] 410 West 10th St,Suite 3000, Indianapolis, IN 46202 USA
基金
美国国家卫生研究院;
关键词
Aalen-Johansen estimator; competing risks; cumulative incidence function; double-sampling; finite state space; missing cause of failure; pseudolikelihood; MULTIPLE IMPUTATION METHODS; CONFIDENCE BANDS; MODEL;
D O I
10.5705/ss.202017.0175
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study examines nonparametric estimations of a transition probability matrix of a nonhomogeneous Markov process with a finite state space and a partially observed absorbing state. We impose a missing-at-random assumption and propose a computationally efficient nonparametric maximum pseudolikelihood estimator (NPMPLE). The estimator depends on a parametric model that is used to estimate the probability of each absorbing state for the missing observations based, potentially, on auxiliary data. For the latter model, we propose a formal goodness-of-fit test based on a residual process. Using modern empirical process theory, we show that the estimator is uniformly consistent and converges weakly to a tight mean-zero Gaussian random field. We also provide a methodology for constructing simultaneous confidence bands. Simulation studies show that the NPMPLE works well with small sample sizes and that it is robust against some degree of misspecification of the parametric model for the missing absorbing states. The method is illustrated using HIV data from sub-Saharan Africa to estimate the transition probabilities of death and disengagement from HIV care.
引用
收藏
页码:2083 / 2104
页数:22
相关论文
共 19 条
  • [1] AALEN OO, 1978, SCAND J STAT, V5, P141
  • [2] Anderson P., 1993, STAT MODELS BASED CO
  • [3] Breslow NE, 2009, STAT BIOSCI, V1, P32, DOI 10.1007/s12561-009-9001-6
  • [4] Analysis of time-to-event data with incomplete event adjudication
    Cook, TD
    Kosorok, MR
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) : 1140 - 1152
  • [5] Nonparametric estimation of cumulative incidence functions for competing risks data with missing cause of failure
    Effraimidis, Georgios
    Dahl, Christian M.
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 89 : 1 - 7
  • [6] Nonparametric Analysis of Competing Risks Data with Event Category Missing at Random
    Gouskova, Natalia A.
    Lin, Feng-Chang
    Fine, Jason P.
    [J]. BIOMETRICS, 2017, 73 (01) : 104 - 113
  • [7] HALL WJ, 1980, BIOMETRIKA, V67, P133
  • [8] Evaluation of a Prediction Model for the Development of Atrial Fibrillation in a Repository of Electronic Medical Records
    Kolek, Matthew J.
    Graves, Amy J.
    Xu, Meng
    Bian, Aihua
    Teixeira, Pedro Luis
    Shoemaker, M. Benjamin
    Parvez, Babar
    Xu, Hua
    Heckbert, Susan R.
    Ellinor, Patrick T.
    Benjamin, Emelia J.
    Alonso, Alvaro
    Denny, Joshua C.
    Moons, Karel G. M.
    Shintani, Ayumi K.
    Harrell, Frank E., Jr.
    Roden, Dan M.
    Darbar, Dawood
    [J]. JAMA CARDIOLOGY, 2016, 1 (09) : 1007 - 1013
  • [9] Improving the efficiency of relative-risk estimation in case-cohort studies
    Kulich, M
    Lin, DY
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (467) : 832 - 844
  • [10] Codifying healthcare - big data and the issue of misclassification
    Ladha, Karim S.
    Eikermann, Matthias
    [J]. BMC ANESTHESIOLOGY, 2015, 15