Lower Bounds for Symbolic Computation on Graphs: Strongly Connected Components, Liveness, Safety, and Diameter
被引:0
|
作者:
Chatterjee, Krishnendu
论文数: 0引用数: 0
h-index: 0
机构:
IST Austria, Klosterneuburg, AustriaIST Austria, Klosterneuburg, Austria
Chatterjee, Krishnendu
[1
]
Dvorak, Wolfgang
论文数: 0引用数: 0
h-index: 0
机构:
TU Wien, Inst Informat Syst, Vienna, AustriaIST Austria, Klosterneuburg, Austria
Dvorak, Wolfgang
[2
]
Henzinger, Monika
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Fac Comp Sci, Vienna, AustriaIST Austria, Klosterneuburg, Austria
Henzinger, Monika
[3
]
Loitzenbauer, Veronika
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Fac Comp Sci, Vienna, Austria
Bar Ilan Univ, Ramat Gan, IsraelIST Austria, Klosterneuburg, Austria
Loitzenbauer, Veronika
[3
,4
]
机构:
[1] IST Austria, Klosterneuburg, Austria
[2] TU Wien, Inst Informat Syst, Vienna, Austria
[3] Univ Vienna, Fac Comp Sci, Vienna, Austria
[4] Bar Ilan Univ, Ramat Gan, Israel
来源:
SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS
|
2018年
基金:
欧洲研究理事会;
奥地利科学基金会;
关键词:
ALGORITHMS;
COMPLEXITY;
D O I:
暂无
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
A model of computation that is widely used in the formal analysis of reactive systems is symbolic algorithms. In this model the access to the input graph is restricted to consist of symbolic operations, which are expensive in comparison to the standard RAM operations. We give lower bounds on the number of symbolic operations for basic graph problems such as the computation of the strongly connected components and of the approximate diameter as well as for fundamental problems in model checking such as safety, liveness, and co-liveness. Our lower bounds are linear in the number of vertices of the graph, even for constant-diameter graphs. For none of these problems lower bounds on the number of symbolic operations were known before. The lower bounds show an interesting separation of these problems from the reachability problem, which can be solved with O(D) symbolic operations, where D is the diameter of the graph. Additionally we present an approximation algorithm for the graph diameter which requires O(n root D) symbolic steps to achieve a (1 + epsilon)-approximation for any constant epsilon> 0. This compares to O(n . D) symbolic steps for the (naive) exact algorithm and O(D) symbolic steps for a 2-approximation. Finally we also give a refined analysis of the strongly connected components algorithms of [15], showing that it uses an optimal number of symbolic steps that is proportional to the sum of the diameters of the strongly connected components.
机构:
Univ Newcastle, Off DVC Res, Callaghan, NSW 2308, AustraliaUniv Paris Est, LIGM, CNRS, UMR 8049, F-77454 Marne La Vallee, France
Fellows, Michael R.
论文数: 引用数:
h-index:
机构:
Fertin, Guillaume
Hermelin, Danny
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Inst Informat, Algorithms & Complex Grp, D-66123 Saarbrucken, GermanyUniv Paris Est, LIGM, CNRS, UMR 8049, F-77454 Marne La Vallee, France
Hermelin, Danny
Vialette, Stephane
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, LIGM, CNRS, UMR 8049, F-77454 Marne La Vallee, FranceUniv Paris Est, LIGM, CNRS, UMR 8049, F-77454 Marne La Vallee, France
机构:
Univ Southern Calif, Ming Hsieh Elect & Comp Engn Dept, Los Angeles, CA 90007 USAUniv Southern Calif, Ming Hsieh Elect & Comp Engn Dept, Los Angeles, CA 90007 USA
Reed, Emily A. A.
论文数: 引用数:
h-index:
机构:
Ramos, Guilherme
Bogdan, Paul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Ming Hsieh Elect & Comp Engn Dept, Los Angeles, CA 90007 USAUniv Southern Calif, Ming Hsieh Elect & Comp Engn Dept, Los Angeles, CA 90007 USA
Bogdan, Paul
Pequito, Sergio
论文数: 0引用数: 0
h-index: 0
机构:
Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, SwedenUniv Southern Calif, Ming Hsieh Elect & Comp Engn Dept, Los Angeles, CA 90007 USA