The quantum black-box complexity of majority

被引:12
作者
Hayes, TP
Kutin, S
van Melkebeek, D
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[3] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
关键词
majority function; quantum computing; query complexity; Las Vegas algorithms;
D O I
10.1007/s00453-002-0981-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We describe a quantum black-box network computing the majority of N bits with zero-sided error the correct answer with probability epsilon using only 2/3 N + O (rootN log(epsilon(-1) log N)) queries: the algorithm returns at least 1 - epsilon, and "I don't know" otherwise. Our algorithm is given as a randomized "XOR decision tree" for which the number of queries on any input is strongly concentrated around a value of at most 2/3 N. We provide a nearly matching lower bound of 2/3 N - O(rootN) on the expected number of queries on a worst-case input in the randomized XOR decision tree model with zero-sided error o(1). Any classical randomized decision tree computing the majority on N bits with zero-sided error 1/2 has cost N.
引用
收藏
页码:480 / 501
页数:22
相关论文
共 13 条
[1]   DETERMINING THE MAJORITY [J].
ALONSO, L ;
REINGOLD, EM ;
SCHOTT, R .
INFORMATION PROCESSING LETTERS, 1993, 47 (05) :253-255
[2]   The average-case complexity of determining the majority [J].
Alonso, L ;
Reingold, EM ;
Schott, R .
SIAM JOURNAL ON COMPUTING, 1997, 26 (01) :1-14
[3]   Quantum lower bounds by polynomials [J].
Beals, R ;
Buhrman, H ;
Cleve, R ;
Mosca, M ;
de Wolf, R .
39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, :352-361
[4]   Quantum complexity theory [J].
Bernstein, E ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1411-1473
[5]  
Cleve R, 1998, P ROY SOC A-MATH PHY, V454, P339, DOI 10.1002/(SICI)1099-0526(199809/10)4:1<33::AID-CPLX10>3.0.CO
[6]  
2-U
[7]  
DAVID FN, 1962, COMBINATORIAL CHANCE, pCH12
[8]   RAPID SOLUTION OF PROBLEMS BY QUANTUM COMPUTATION [J].
DEUTSCH, D ;
JOZSA, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 439 (1907) :553-558
[9]  
Nisan N., 1994, Computational Complexity, V4, P301, DOI 10.1007/BF01205052
[10]  
Paturi R., 1992, Proceedings of the Twenty-Fourth Annual ACM Symposium on the Theory of Computing, P468, DOI 10.1145/129712.129758