Tonoli's Calabi-Yau threefolds revisited

被引:1
作者
Kapustka, Grzegorz [1 ,2 ,3 ]
Kapustka, Michal [1 ,2 ,3 ]
机构
[1] Jagiellonian Univ, Dept Math & Informat, Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Polish Acad Sci, Inst Math, Ul Sniadeckich 8,POB 21, PL-00956 Warsaw, Poland
[3] Univ Zurich, Math Nat Wissensch Fak, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
关键词
Calabi-Yau threefolds; Surfaces of general type; Pfaffian resolutions; Geometric syzygics; CODIMENSION; 3; SURFACES; MIRROR;
D O I
10.1016/j.jalgebra.2018.05.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find a simple construction of Tonoli's examples of Calabi-Yau threefolds in complex P-6. We prove that the rank of the Picard group of elements of one of these families is at least 2. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:307 / 336
页数:30
相关论文
共 22 条
[1]  
[Anonymous], 1997, AMS PROC S PURE MATH
[2]  
[Anonymous], 1977, ALGEBRAIC GEOMETRY G
[3]  
Bohm Janko, 2008, ARXIV07084402
[4]  
Catanese F., 2016, ARXIV160201514
[5]   Non-general type surfaces in P4:: Some remarks on bounds and constructions [J].
Decker, W ;
Schreyer, FO .
JOURNAL OF SYMBOLIC COMPUTATION, 2000, 29 (4-5) :545-582
[6]   Lagrangian subbundles and codimension 3 subcanonical subschemes [J].
Eisenbud, D ;
Popescu, S ;
Walter, C .
DUKE MATHEMATICAL JOURNAL, 2001, 107 (03) :427-467
[7]  
Enckevort Christian van, CALABI YAU OPERATORS
[8]  
Kanazawa A, 2012, COMMUN NUMBER THEORY, V6, P661
[9]  
Kapustka G, 2016, ANN SCUOLA NORM-SCI, V16, P767
[10]  
Kapustka G, 2016, ANN MAT PUR APPL, V195, P529, DOI 10.1007/s10231-015-0476-0