Minimax regret and strategic uncertainty

被引:35
作者
Renou, Ludovic [1 ]
Schlag, Karl H. [2 ]
机构
[1] Univ Leicester, Dept Econ, Leicester LE1 7RH, Leics, England
[2] Univ Pompeu Fabra, Dept Econ & Business, Barcelona, Spain
关键词
Minimax regret; Rationality; Conjectures; Price dispersion; Auction; EQUILIBRIUM; EXISTENCE; AVERSION; BELIEFS; CHOICE; GAMES;
D O I
10.1016/j.jet.2009.07.005
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper introduces a new solution concept, a minimax regret equilibrium, which allows for the possibility that players are uncertain about the rationality and conjectures of their opponents. We provide several applications of our concept. In particular, we consider price-setting environments and show that optimal pricing policy follows a non-degenerate distribution. The induced price dispersion is consistent with experimental and empirical observations (Baye and Morgan (2004) [4]). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:264 / 286
页数:23
相关论文
共 33 条
  • [1] A DEFINITION OF SUBJECTIVE-PROBABILITY
    ANSCOMBE, FJ
    AUMANN, RJ
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (01): : 199 - &
  • [2] EPISTEMIC CONDITIONS FOR NASH EQUILIBRIUM
    AUMANN, R
    BRANDENBURGER, A
    [J]. ECONOMETRICA, 1995, 63 (05) : 1161 - 1180
  • [3] Battigalli Pierpaolo, 1987, THESIS
  • [4] Price dispersion in the lab and on the Internet: theory and evidence
    Baye, MR
    Morgan, J
    [J]. RAND JOURNAL OF ECONOMICS, 2004, 35 (03) : 449 - 466
  • [5] BERGEMANN D, 2005, 200510 EUI ECO
  • [6] Pricing without priors
    Bergemann, Dirk
    Schlag, Karl H.
    [J]. JOURNAL OF THE EUROPEAN ECONOMIC ASSOCIATION, 2008, 6 (2-3) : 560 - 569
  • [7] BERNHEIM D, 1984, ECONOMETRICA, V52, P1007
  • [8] Camerer C.F., 2003, BEHAV GAME THEORY
  • [9] SELF-CONFIRMING EQUILIBRIUM
    FUDENBERG, D
    LEVINE, DK
    [J]. ECONOMETRICA, 1993, 61 (03) : 523 - 545
  • [10] GILBOA I, 1989, J MATH ECON, V18, P133