Nasseh method to visualize high-dimensional data

被引:5
|
作者
Chaffi, Babak Nasseh [1 ]
Tafreshi, Fakhteh Soltani [1 ]
机构
[1] Arak Univ, Fac Engn, Dept Comp Engn, Arak 3815688349, Iran
关键词
Visualization; High-dimensional geometry; Coordinate; High-dimensional data set; Pareto-front visualization; MULTIOBJECTIVE OPTIMIZATION; DESIGN;
D O I
10.1016/j.asoc.2019.105722
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Today's ever-increasing application of high-dimensional data sets makes it necessary to find a way to fully comprehend them. One of these ways is visualizing data sets. However, visualizing more than 3-dimensional data sets in a fathomable way has always been a serious challenge for researchers in this field. There are some visualizing methods already available such as parallel coordinates, scatter plot matrix, RadViz, bubble charts, heatmaps, Sammon mapping and self organizing maps. In this paper, an axis-based method (called Nasseh method) is introduced in which familiar elements of visualization of 1-, 2- and 3-dimensional data sets are used to visualize higher dimensional data sets so that it will be easier to explore the data sets in the corresponding dimensions. Nasseh method can be used in many applications from illustrating points in high-dimensional geometry to visualizing estimated Pareto-fronts for many-objective optimization problems. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] How to visualize high-dimensional data
    Mrowka, Ralf
    Schmauder, Ralf
    ACTA PHYSIOLOGICA, 2024, 240 (10)
  • [2] Using self-organizing maps to visualize high-dimensional data
    Penn, BS
    COMPUTERS & GEOSCIENCES, 2005, 31 (05) : 531 - 544
  • [3] An Initialization Method for Clustering High-Dimensional Data
    Chen, Luying
    Chen, Lifei
    Jiang, Qingshan
    Wang, Beizhan
    Shi, Liang
    FIRST INTERNATIONAL WORKSHOP ON DATABASE TECHNOLOGY AND APPLICATIONS, PROCEEDINGS, 2009, : 444 - +
  • [4] An Ensemble Method for High-Dimensional Multilabel Data
    Liu, Huawen
    Zheng, Zhonglong
    Zhao, Jianmin
    Ye, Ronghua
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [5] Ensemble Method for Classification of High-Dimensional Data
    Piao, Yongjun
    Park, Hyun Woo
    Jin, Cheng Hao
    Ryu, Keun Ho
    2014 INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2014, : 245 - +
  • [6] DACC: A Data Exploration Method for High-Dimensional Data Sets
    Zhao, Qingnan
    Li, Hui
    Chen, Mei
    Dai, Zhenyu
    Zhu, Ming
    ARTIFICIAL INTELLIGENCE AND ALGORITHMS IN INTELLIGENT SYSTEMS, 2019, 764 : 219 - 229
  • [7] An efficient clustering method of data mining for high-dimensional data
    Chang, JW
    Kang, HM
    8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL II, PROCEEDINGS: COMPUTING TECHNIQUES, 2004, : 273 - 278
  • [8] High-dimensional data
    Geubbelmans, Melvin
    Rousseau, Axel-Jan
    Valkenborg, Dirk
    Burzykowski, Tomasz
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2023, 164 (03) : 453 - 456
  • [9] High-dimensional data
    Amaratunga, Dhammika
    Cabrera, Javier
    JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2016, 44 (01): : 3 - 9
  • [10] High-dimensional clustering method for high performance data mining
    Chang, Jae-Woo
    Lee, Hyun-Jo
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 621 - +