Reinforcement learning for online control of evolutionary algorithms

被引:0
|
作者
Eiben, A. E. [1 ]
Horvath, Mark [1 ]
Kowalczyk, Wojtek [1 ]
Schut, Martijn C. [1 ]
机构
[1] Vrije Univ Amsterdam, Dept Comp Sci, Amsterdam, Netherlands
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The research reported in this paper is concerned with assessing the usefulness of reinforcment learning (RL) for on-line calibration of parameters in evolutionary algorithms (EA). We are running an RL procedure and the EA simultaneously and the RL is changing the EA parameters on-the-fly. We evaluate this approach experimentally on a range of fitness landscapes with varying degrees of ruggedness. The results show that EA calibrated by the RL-based approach outperforms a benchmark EA.
引用
收藏
页码:151 / +
页数:3
相关论文
共 50 条
  • [1] Evolutionary algorithms for reinforcement learning
    Moriarty, DE
    Schultz, AC
    Grefenstette, JJ
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1999, 11 : 241 - 276
  • [2] Evolutionary Algorithms for Reinforcement Learning
    Moriarty, David E.
    Schultz, Alan C.
    Grefenstette, John J.
    Journal of Artificial Intelligence Research, 1999, 11 (00): : 241 - 276
  • [3] A survey on Evolutionary Reinforcement Learning algorithms
    Zhu, Qingling
    Wu, Xiaoqiang
    Lin, Qiuzhen
    Ma, Lijia
    Li, Jianqiang
    Ming, Zhong
    Chen, Jianyong
    NEUROCOMPUTING, 2023, 556
  • [4] Offline Evaluation of Online Reinforcement Learning Algorithms
    Mandel, Travis
    Liu, Yun-En
    Brunskill, Emma
    Popovic, Zoran
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1926 - 1933
  • [5] Survey of Deep Reinforcement Learning Methods with Evolutionary Algorithms
    Lü S.
    Gong X.-Y.
    Zhang Z.-H.
    Han S.
    Zhang J.-W.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (07): : 1478 - 1499
  • [6] Evolutionary Algorithms and Reinforcement Learning in Experiments with Slot Cars
    Martinec, Dan
    Bundzel, Marek
    2013 INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC), 2013, : 159 - 162
  • [7] Reinforcement learning versus evolutionary computation: A survey on hybrid algorithms
    Drugan, Madalina M.
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 : 228 - 246
  • [8] Online Reinforcement Learning for Autonomous Sensor Control
    Ravier, Robert
    Garagic, Denis
    Peskoe, Jacob
    Galoppo, Travis
    Tigue, James
    Rhodes, Bradley J.
    Zulch, Peter
    2023 IEEE AEROSPACE CONFERENCE, 2023,
  • [9] Online reinforcement learning control by Bayesian inference
    Xia, Zhongpu
    Zhao, Dongbin
    IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (12): : 1331 - 1338
  • [10] Reinforcement Learning for Online Industrial Process Control
    Govindhasamy, James J.
    McLoone, Sean F.
    Irwin, George W.
    French, John J.
    Doyle, Richard P.
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2005, 9 (01) : 23 - 30