Minimum distance model checking in Berkson measurement error models with validation data

被引:1
|
作者
Geng, Pei [1 ]
Koul, Hira L. [2 ]
机构
[1] Illinois State Univ, Normal, IL 61761 USA
[2] Michigan State Univ, E Lansing, MI 48824 USA
关键词
Kernel smoothing; Integrated square distance; Two sample U statistic; REGRESSION;
D O I
10.1007/s11749-018-0610-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article studies a minimum distance regression model checking approach in the presence of Berkson measurement errors in covariates without specifying the measurement error density but when external validation data are available. The proposed tests are based on a class of minimized integrated square distances between a nonparametric estimate of the calibrated regression function and the parametric null model being fitted. The asymptotic distributions of these tests under the null hypothesis and against certain alternatives are established. Surprisingly, these asymptotic distributions are the same as in the case of known measurement error density. In comparison, the asymptotic distributions of the corresponding minimum distance estimators of the null model parameters are affected by the estimation of the calibrated regression function. A simulation study shows desirable performance of a member of the proposed class of estimators and tests.
引用
收藏
页码:879 / 899
页数:21
相关论文
共 34 条
  • [1] Minimum distance model checking in Berkson measurement error models with validation data
    Pei Geng
    Hira L. Koul
    TEST, 2019, 28 : 879 - 899
  • [2] Semiparametric estimation for measurement error models with validation data
    Xu, Yuhang
    Kim, Jae Kwang
    Li, Yehua
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2017, 45 (02): : 185 - 201
  • [3] MODEL CHECKING FOR GENERAL LINEAR ERROR-IN-COVARIABLES MODEL WITH VALIDATION DATA
    Dai, Pengjie
    Sun, Zhihua
    Wang, Peng
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2010, 23 (06) : 1153 - 1166
  • [4] Validation of the measurement model concept for error structure identification
    Shukla, PK
    Orazem, ME
    Crisalle, OD
    ELECTROCHIMICA ACTA, 2004, 49 (17-18) : 2881 - 2889
  • [5] MINIMUM MEAN SQUARED ERROR MODEL AVERAGING IN LIKELIHOOD MODELS
    Charkhi, Ali
    Claeskens, Gerda
    Hansen, Bruce E.
    STATISTICA SINICA, 2016, 26 (02) : 809 - 840
  • [6] A Minimum Distance Lack-of-Fit Test in a Markovian Multiplicative Error Model
    Koul, Hira L.
    Perera, Indeewara
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2021, 15 (02)
  • [7] Bayesian inference in measurement error models for replicated data
    de Castro, Mario
    Bolfarine, Heleno
    Galea, M.
    ENVIRONMETRICS, 2013, 24 (01) : 22 - 30
  • [8] A Bayesian Measurement Error Model for Misaligned Radiographic Data
    Lennox, Kristin P.
    Glascoe, Lee G.
    TECHNOMETRICS, 2013, 55 (04) : 450 - 460
  • [9] Partially function linear error-in-response models with validation data
    Zhang Tao
    Meng Jiafu
    Wang Bin
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2017, 30 (03) : 734 - 750
  • [10] Semiparametric linear transformation model with differential measurement error and validation sampling
    Wang, Xuan
    Wang, Qihua
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 141 : 67 - 80