Traveling length and minimal traveling time for flow through percolation networks with long-range spatial correlations -: art. no. 046304

被引:24
作者
Araújo, AD
Moreira, AA
Makse, HA
Stanley, HE
Andrade, JS
机构
[1] Univ Fed Ceara, Dept Fis, BR-60451970 Fortaleza, Ceara, Brazil
[2] Univ Estadual Vale Acarau, Dept Fis, BR-62040370 Sobral, Ceara, Brazil
[3] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[4] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[5] Boston Univ, Dept Phys, Boston, MA 02215 USA
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 04期
关键词
D O I
10.1103/PhysRevE.66.046304
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the distributions of traveling length l and minimal traveling time t(min) through two-dimensional percolation porous media characterized by long-range spatial correlations. We model the dynamics of fluid displacement by the convective movement of tracer particles driven by a pressure difference between two fixed sites ("wells") separated by Euclidean distance r. For strongly correlated pore networks at criticality, we find that the probability distribution functions P(l) and P(t(min)) follow the same scaling ansatz originally proposed for the uncorrelated case, but with quite different scaling exponents. We relate these changes in dynamical behavior to the main morphological difference between correlated and uncorrelated clusters, namely, the compactness of their backbones. Our simulations reveal that the dynamical scaling exponents d(l) and d(t) for correlated geometries take values intermediate between the uncorrelated and homogeneous limiting cases, where l*similar tor(l)(d) and t(min)*similar tor(t)(d), and l* and t(min)* are the most probable values of l and t(min), respectively.
引用
收藏
页数:7
相关论文
共 30 条
[11]   RANDOM MULTIPLICATIVE PROCESSES AND TRANSPORT IN STRUCTURES WITH CORRELATED SPATIAL DISORDER [J].
HAVLIN, S ;
SELINGER, RB ;
SCHWARTZ, M ;
STANLEY, HE ;
BUNDE, A .
PHYSICAL REVIEW LETTERS, 1988, 61 (13) :1438-1441
[12]   UNIVERSALITY CLASSES FOR DIFFUSION IN THE PRESENCE OF CORRELATED SPATIAL DISORDER [J].
HAVLIN, S ;
SCHWARTZ, M ;
SELINGER, RB ;
BUNDE, A ;
STANLEY, HE .
PHYSICAL REVIEW A, 1989, 40 (03) :1717-1719
[13]   DIFFUSION IN DISORDERED MEDIA [J].
HAVLIN, S ;
BENAVRAHAM, D .
ADVANCES IN PHYSICS, 1987, 36 (06) :695-798
[14]   QUANTITATIVE PREDICTION OF PERMEABILITY IN POROUS ROCK [J].
KATZ, AJ ;
THOMPSON, AH .
PHYSICAL REVIEW B, 1986, 34 (11) :8179-8181
[15]   PREDICTION OF ROCK ELECTRICAL-CONDUCTIVITY FROM MERCURY INJECTION MEASUREMENTS [J].
KATZ, AJ ;
THOMPSON, AH .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1987, 92 (B1) :599-607
[16]   Predicting oil recovery using percolation theory [J].
King, PR ;
Buldyrev, SV ;
Dokholyan, NV ;
Havlin, S ;
Lee, Y ;
Paul, G ;
Stanley, HE ;
Vandesteeg, N .
PETROLEUM GEOSCIENCE, 2001, 7 :S105-S107
[17]  
KING PR, 1990, N SEA OIL GAS RESERV, V3
[18]   Permeability and effective porosity of porous media [J].
Koponen, A ;
Kataja, M ;
Timonen, J .
PHYSICAL REVIEW E, 1997, 56 (03) :3319-3325
[19]   FLUID PERMEABILITY IN POROUS-MEDIA - COMPARISON OF ELECTRICAL ESTIMATES WITH HYDRODYNAMICAL CALCULATIONS [J].
KOSTEK, S ;
SCHWARTZ, LM ;
JOHNSON, DL .
PHYSICAL REVIEW B, 1992, 45 (01) :186-195
[20]   Traveling time and traveling length in critical percolation clusters [J].
Lee, Y ;
Andrade, JS ;
Buldyrev, SV ;
Dokholyan, NV ;
Havlin, S ;
King, PR ;
Paul, G ;
Stanley, HE .
PHYSICAL REVIEW E, 1999, 60 (03) :3425-3428