Traveling length and minimal traveling time for flow through percolation networks with long-range spatial correlations -: art. no. 046304

被引:24
作者
Araújo, AD
Moreira, AA
Makse, HA
Stanley, HE
Andrade, JS
机构
[1] Univ Fed Ceara, Dept Fis, BR-60451970 Fortaleza, Ceara, Brazil
[2] Univ Estadual Vale Acarau, Dept Fis, BR-62040370 Sobral, Ceara, Brazil
[3] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[4] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[5] Boston Univ, Dept Phys, Boston, MA 02215 USA
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 04期
关键词
D O I
10.1103/PhysRevE.66.046304
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the distributions of traveling length l and minimal traveling time t(min) through two-dimensional percolation porous media characterized by long-range spatial correlations. We model the dynamics of fluid displacement by the convective movement of tracer particles driven by a pressure difference between two fixed sites ("wells") separated by Euclidean distance r. For strongly correlated pore networks at criticality, we find that the probability distribution functions P(l) and P(t(min)) follow the same scaling ansatz originally proposed for the uncorrelated case, but with quite different scaling exponents. We relate these changes in dynamical behavior to the main morphological difference between correlated and uncorrelated clusters, namely, the compactness of their backbones. Our simulations reveal that the dynamical scaling exponents d(l) and d(t) for correlated geometries take values intermediate between the uncorrelated and homogeneous limiting cases, where l*similar tor(l)(d) and t(min)*similar tor(t)(d), and l* and t(min)* are the most probable values of l and t(min), respectively.
引用
收藏
页数:7
相关论文
共 30 条
  • [1] HOPPING CONDUCTIVITY IN DISORDERED SYSTEMS
    AMBEGAOKAR, V
    HALPERIN, BI
    LANGER, JS
    [J]. PHYSICAL REVIEW B-SOLID STATE, 1971, 4 (08): : 2612 - +
  • [2] Dynamics of viscous penetration in percolation porous media -: art. no. 051403
    Andrade, JS
    Araújo, AD
    Buldyrev, SV
    Havlin, S
    Stanley, HE
    [J]. PHYSICAL REVIEW E, 2001, 63 (05): : 514031 - 514035
  • [3] Fluid flow through porous media: The role of stagnant zones
    Andrade, JS
    Almeida, MP
    Mendes, J
    Havlin, S
    Suki, B
    Stanley, HE
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (20) : 3901 - 3904
  • [4] Flow between two sites on a percolation cluster
    Andrade, JS
    Buldyrev, SV
    Dokholyan, NV
    Havlin, S
    King, PR
    Lee, YK
    Paul, G
    Stanley, HE
    [J]. PHYSICAL REVIEW E, 2000, 62 (06): : 8270 - 8281
  • [5] Bear J., 1988, DYNAMICS FLUIDS PORO
  • [6] Ben-Avraham D., 2000, DIFFUSION REACTIONS
  • [7] Bunde A., 1996, FRACTALS DISORDERED, DOI DOI 10.1007/978-3-642-84868-1
  • [8] de Gennes P.G., 1979, SCALING CONCEPTS POL
  • [9] Scaling of the distribution of shortest paths in percolation
    Dokholyan, NV
    Lee, YK
    Buldyrev, SV
    Havlin, S
    King, PR
    Stanley, HE
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1998, 93 (3-4) : 603 - 613
  • [10] Dullien F, 1979, POROUS MEDIA FLUID T, DOI DOI 10.1016/0300-9467(81)80049-4