Stochastic Parallel Block Coordinate Descent for Large-Scale Saddle Point Problems

被引:0
|
作者
Zhu, Zhanxing [1 ]
Storkey, Amos J. [1 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh, Midlothian, Scotland
来源
THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE | 2016年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider convex-concave saddle point problems with a separable structure and non-strongly convex functions. We propose an efficient stochastic block co-ordinate descent method using adaptive primal-dual updates, which enables flexible parallel optimization for large-scale problems. Our method shares the efficiency and flexibility of block coordinate descent methods with the simplicity of primal-dual methods and utilizing the structure of the separable convex-concave saddle point problem. It is capable of solving a wide range of machine learning applications, including robust principal component analysis, Lasso, and feature selection by group Lasso, etc. Theoretically and empirically, we demonstrate significantly better performance than state-of-the-art methods in all these applications.
引用
收藏
页码:2429 / 2435
页数:7
相关论文
共 50 条
  • [1] On the flexibility of block coordinate descent for large-scale optimization
    Wang, Xiangfeng
    Zhang, Wenjie
    Yan, Junchi
    Yuan, Xiaoming
    Zha, Hongyuan
    NEUROCOMPUTING, 2018, 272 : 471 - 480
  • [2] Adaptive Stochastic Primal-Dual Coordinate Descent for Separable Saddle Point Problems
    Zhu, Zhanxing
    Storkey, Amos J.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2015, PT I, 2015, 9284 : 645 - 658
  • [3] Efficient Asynchronous Semi-Stochastic Block Coordinate Descent Methods for Large-Scale SVD
    Shang, Fanhua
    Zhang, Zhihui
    Liu, Yuanyuan
    Liu, Hongying
    Xu, Jing
    IEEE ACCESS, 2021, 9 : 126159 - 126171
  • [4] Block coordinate descent algorithms for large-scale sparse multiclass classification
    Blondel, Mathieu
    Seki, Kazuhiro
    Uehara, Kuniaki
    MACHINE LEARNING, 2013, 93 (01) : 31 - 52
  • [5] Block coordinate descent algorithms for large-scale sparse multiclass classification
    Mathieu Blondel
    Kazuhiro Seki
    Kuniaki Uehara
    Machine Learning, 2013, 93 : 31 - 52
  • [6] A random coordinate descent method for large-scale resource allocation problems
    Necoara, I.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 4474 - 4479
  • [7] Indexed Block Coordinate Descent for Large-Scale Linear Classification with Limited Memory
    Yen, Ian E. H.
    Chang, Chun-Fu
    Lin, Ting-Wei
    Lin, Shan-Wei
    Lin, Shou-De
    19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, : 248 - 256
  • [8] Coordinate descent algorithms for large-scale SVDD
    Tao, Q. (taoqing@gmail.com), 1600, Science Press (25):
  • [9] RANDOMIZED BLOCK COORDINATE DESCENDANT STRONG FOR LARGE-SCALE STOCHASTIC OPTIMIZATION
    Wang, Wenyu
    Wan, Hong
    Chang, Kuo-Hao
    2016 WINTER SIMULATION CONFERENCE (WSC), 2016, : 614 - 625
  • [10] An efficient parallel block coordinate descent algorithm for large-scale precision matrix estimation using graphics processing units
    Young-Geun Choi
    Seunghwan Lee
    Donghyeon Yu
    Computational Statistics, 2022, 37 : 419 - 443