Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models

被引:99
作者
Birgin, E. G. [1 ]
Gardenghi, J. L. [1 ]
Martinez, J. M. [2 ]
Santos, S. A. [2 ]
Toint, Ph. L. [3 ,4 ]
机构
[1] Univ Sao Paulo, Inst Math & Stat, Dept Comp Sci, Rua Matao 1010,Cidade Univ, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Estadual Campinas, Inst Math Stat & Sci Comp, Dept Appl Math, Campinas, SP, Brazil
[3] Univ Namur, Namur Ctr Complex Syst naXys, 61 Rue Bruxelles, B-5000 Namur, Belgium
[4] Univ Namur, Dept Math, 61 Rue Bruxelles, B-5000 Namur, Belgium
基金
巴西圣保罗研究基金会;
关键词
Nonlinear optimization; Unconstrained optimization; Evaluation complexity; High-order models; Regularization; CUBIC REGULARIZATION; GLOBAL PERFORMANCE; ALGORITHM;
D O I
10.1007/s10107-016-1065-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The worst-case evaluation complexity for smooth (possibly nonconvex) unconstrained optimization is considered. It is shown that, if one is willing to use derivatives of the objective function up to order p (for p >= 1) and to assume Lipschitz continuity of the p-th derivative, then an epsilon-approximate first-order critical point can be computed in at most O(epsilon -((p+1)/p)) evaluations of the problem's objective function and its derivatives. This generalizes and subsumes results known for p = 1 and p = 2.
引用
收藏
页码:359 / 368
页数:10
相关论文
共 18 条