Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models

被引:99
作者
Birgin, E. G. [1 ]
Gardenghi, J. L. [1 ]
Martinez, J. M. [2 ]
Santos, S. A. [2 ]
Toint, Ph. L. [3 ,4 ]
机构
[1] Univ Sao Paulo, Inst Math & Stat, Dept Comp Sci, Rua Matao 1010,Cidade Univ, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Estadual Campinas, Inst Math Stat & Sci Comp, Dept Appl Math, Campinas, SP, Brazil
[3] Univ Namur, Namur Ctr Complex Syst naXys, 61 Rue Bruxelles, B-5000 Namur, Belgium
[4] Univ Namur, Dept Math, 61 Rue Bruxelles, B-5000 Namur, Belgium
基金
巴西圣保罗研究基金会;
关键词
Nonlinear optimization; Unconstrained optimization; Evaluation complexity; High-order models; Regularization; CUBIC REGULARIZATION; GLOBAL PERFORMANCE; ALGORITHM;
D O I
10.1007/s10107-016-1065-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The worst-case evaluation complexity for smooth (possibly nonconvex) unconstrained optimization is considered. It is shown that, if one is willing to use derivatives of the objective function up to order p (for p >= 1) and to assume Lipschitz continuity of the p-th derivative, then an epsilon-approximate first-order critical point can be computed in at most O(epsilon -((p+1)/p)) evaluations of the problem's objective function and its derivatives. This generalizes and subsumes results known for p = 1 and p = 2.
引用
收藏
页码:359 / 368
页数:10
相关论文
共 18 条
  • [1] [Anonymous], 2004, INTRO LECT CONVEX OP
  • [2] CONVERGENCE OF A REGULARIZED EUCLIDEAN RESIDUAL ALGORITHM FOR NONLINEAR LEAST-SQUARES
    Bellavia, S.
    Cartis, C.
    Gould, N. I. M.
    Morini, B.
    Toint, Ph. L.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (01) : 1 - 29
  • [3] Complexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimization
    Bian, Wei
    Chen, Xiaojun
    Ye, Yinyu
    [J]. MATHEMATICAL PROGRAMMING, 2015, 149 (1-2) : 301 - 327
  • [4] An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity
    Cartis, C.
    Gould, N. I. M.
    Toint, Ph. L.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (04) : 1662 - 1695
  • [5] Complexity bounds for second-order optimality in unconstrained optimization
    Cartis, C.
    Gould, N. I. M.
    Toint, Ph. L.
    [J]. JOURNAL OF COMPLEXITY, 2012, 28 (01) : 93 - 108
  • [6] ON THE COMPLEXITY OF STEEPEST DESCENT, NEWTON'S AND REGULARIZED NEWTON'S METHODS FOR NONCONVEX UNCONSTRAINED OPTIMIZATION PROBLEMS
    Cartis, C.
    Gould, N. I. M.
    Toint, Ph. L.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) : 2833 - 2852
  • [7] Cartis C., 2011, NAXYS172011 U NAM
  • [8] Cartis C., 2016, 2 ORDER OPTIMALITY 1
  • [9] Evaluation complexity of adaptive cubic regularization methods for convex unconstrained optimization
    Cartis, Coralia
    Gould, Nicholas I. M.
    Toint, Philippe L.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (02) : 197 - 219
  • [10] Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity
    Cartis, Coralia
    Gould, Nicholas I. M.
    Toint, Philippe L.
    [J]. MATHEMATICAL PROGRAMMING, 2011, 130 (02) : 295 - 319