Self-similar Sets as Hyperbolic Boundaries

被引:27
作者
Lau, Ka-Sing [1 ]
Wang, Xiang-Yang [2 ]
机构
[1] Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China
[2] Zhongshan Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
boundary; geodesic ray; hyperbolic graph; iterated function system; self-similar sets; open set condition; SIERPINSKI GASKET; DIMENSION; FRACTALS;
D O I
10.1512/iumj.2009.58.3639
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, for an iterated function system {S-j}(j=1)(N), of similitudes that satisfies the open set condition, there is a natural graph structure in the representing symbolic space to make it a hyperbolic graph, and the hyperbolic boundary is homeomorphic to the self-similar set generated by {S-j}(j=1)(N).
引用
收藏
页码:1777 / 1795
页数:19
相关论文
共 25 条
[1]  
ANCONA A, 1990, THEORIE POTENTIEL GR
[2]  
[Anonymous], 2001, ANAL FRACTALS
[3]  
[Anonymous], 2000, CAMBRIDGE TRACTS MAT
[4]  
[Anonymous], 1992, Contemp. Math.
[5]   SELF-SIMILAR SETS .7. A CHARACTERIZATION OF SELF-SIMILAR FRACTALS WITH POSITIVE HAUSDORFF MEASURE [J].
BANDT, C ;
GRAF, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (04) :995-1001
[6]  
COORNAERT M, 1990, LECT NOTES MATH, V1441, pR9
[7]  
Coornaert Michel., 1993, LECT NOTES MATH, V1539
[8]   Open set condition and post-critically finite self-similar sets [J].
Deng, Qi-Rong ;
Lau, Ka-Sing .
NONLINEARITY, 2008, 21 (06) :1227-1232
[9]   Sierpinski gasket as a Martin boundary II (The intrinsic metric) [J].
Denker, M ;
Sato, H .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1999, 35 (05) :769-794
[10]  
Denker M, 2002, MATH NACHR, V241, P32, DOI 10.1002/1522-2616(200207)241:1<32::AID-MANA32>3.0.CO