On the extremal number of edges in 2-factor Hamiltonian graphs

被引:4
作者
Faudree, Ralph J. [1 ]
Gould, Ronald J. [2 ]
Jacobson, Michael S. [3 ]
机构
[1] Univ Memphis, Off Provost, Memphis, TN 38152 USA
[2] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[3] Univ Colorado, Dept Math, Denver, CO 80217 USA
来源
GRAPH THEORY IN PARIS: PROCEEDINGS OF A CONFERENCE IN MEMORY OF CALUDE BERGE | 2007年
关键词
2-factor; Hamiltonian; size;
D O I
10.1007/978-3-7643-7400-6_11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the question of determining the maximum number of edges in a Hamiltonian graph of order n that contains no 2-factor with more than one cycle, that is, 2-factor Hamiltonian graphs. We obtain exact results for both bipartite graphs, and general graphs, and construct extremal graphs in each case.
引用
收藏
页码:139 / +
页数:2
相关论文
共 6 条
[1]   Graphs and digraphs with all 2-factors isomorphic [J].
Abreu, M ;
Aldred, REL ;
Funk, M ;
Jackson, B ;
Labbate, D ;
Sheehan, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 92 (02) :395-404
[2]   Regular bipartite graphs with all 2-factors isomorphic [J].
Aldred, REL ;
Funk, M ;
Jackson, B ;
Labbate, D ;
Sheehan, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 92 (01) :151-161
[3]   A note on 2-factors with two components [J].
Faudree, RJ ;
Gould, RJ ;
Jacobson, MS ;
Lesniak, L ;
Saito, A .
DISCRETE MATHEMATICS, 2005, 300 (1-3) :218-224
[4]   2-Factor hamiltonian graphs [J].
Funk, M ;
Jackson, B ;
Labbate, D ;
Sheehan, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 87 (01) :138-144
[5]   Advances on the Hamiltonian problem - A survey [J].
Gould, RJ .
GRAPHS AND COMBINATORICS, 2003, 19 (01) :7-52
[6]   MAXIMUM GRAPHS WITH A UNIQUE K-FACTOR [J].
HENDRY, GRT .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (01) :53-63