Convergence of finite volume schemes for a degenerate convection-diffusion equation arising in flow in porous media

被引:51
作者
Afif, M
Amaziane, B
机构
[1] Univ Pau, Dept Math, F-64000 Pau, France
[2] Univ Cadi Ayyad, Dept Math, Marrakech 40000, Morocco
关键词
finite volume method; degenerate parabolic equation; nonlinear convection-diffusion; porous media;
D O I
10.1016/S0045-7825(02)00458-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper develops discretizations using the finite volume method for a nonlinear, degenerate, convection-diffusion equation in multiple dimensions on unstructured grids. We will derive three families of numerical schemes. They are classified as explicit, implicit, and semi-implicit. A Godunov scheme is used for the convection term. It is shown that these finite volume schemes (FVS) satisfy a discrete maximum principle. We prove the convergence of these FVS. This is done by means of a priori estimates in L-infinity and weak B V estimates under appropriate CFL conditions. Numerical results for oil recovery simulation are presented. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:5265 / 5286
页数:22
相关论文
共 22 条
[1]   On convergence of finite volume schemes for one-dimensional two-phase flow in porous media [J].
Afif, M ;
Amaziane, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 145 (01) :31-48
[2]  
AFIF M, 1999, FINITE VOLUMES COMPL, V2, P387
[3]  
[Anonymous], MATH MODELLING FLOW
[4]  
ANTONTSEV SN, 1990, BOUNDARY VALUE PROBL
[5]   A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media [J].
Arbogast, T ;
Wheeler, MF ;
Zhang, NY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (04) :1669-1687
[6]  
Bourgeat A., 1995, APPL ANAL, V56, P381
[7]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[8]  
Chavent G., 1986, MATH MODELS FINITE E
[9]   Fully discrete finite element analysis of multiphase flow in groundwater hydrology [J].
Chen, ZX ;
Ewing, RE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (06) :2228-2253
[10]  
COURDIERE Y, 1999, ESAIM-MATH MODEL NUM, V33, P493