Closing the DNA replication cycle: from simple circular molecules to supercoiled and knotted DNA catenanes

被引:21
作者
Schvartzman, Jorge B. [1 ]
Hernandez, Pablo [1 ]
Krimer, Dora B. [1 ]
Dorier, Julien [2 ]
Stasiak, Andrzej [2 ,3 ]
机构
[1] CSIC, Ctr Invest Biol, Dept Cell & Mol Biol, Madrid 28040, Spain
[2] SIB Swiss Inst Bioinformat, CH-1015 Lausanne, Switzerland
[3] Univ Lausanne, Fac Biol & Med, Ctr Integrat Genom, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
SITE-SPECIFIC RECOMBINATION; COLI TOPOISOMERASE-IV; ESCHERICHIA-COLI; SINGLE-MOLECULE; FORK REVERSAL; PBR322; DNA; BACTERIAL; CHROMOSOME; GYRASE; DECATENATION;
D O I
10.1093/nar/gkz586
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Due to helical structure of DNA, massive amounts of positive supercoils are constantly introduced ahead of each replication fork. Positive supercoiling inhibits progression of replication forks but various mechanisms evolved that permit very efficient relaxation of that positive supercoiling. Some of these mechanisms lead to interesting topological situations where DNA supercoiling, catenation and knotting coexist and influence each other in DNA molecules being replicated. Here, we first review fundamental aspects of DNA supercoiling, catenation and knotting when these qualitatively different topological states do not coexist in the same circular DNA but also when they are present at the same time in replicating DNA molecules. We also review differences between eukaryotic and prokaryotic cellular strategies that permit relaxation of positive supercoiling arising ahead of the replication forks. We end our review by discussing very recent studies giving a long-sought answer to the question of how slow DNA topoisomerases capable of relaxing just a few positive supercoils per second can counteract the introduction of hundreds of positive supercoils per second ahead of advancing replication forks.
引用
收藏
页码:7182 / 7198
页数:17
相关论文
共 111 条
  • [31] Supercoiling in DNA and chromatin
    Gilbert, Nick
    Allan, James
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 2014, 25 : 15 - 21
  • [32] Herbert JM, 1996, J BIOL CHEM, V271, P25928
  • [33] Structural diversity of supercoiled DNA
    Irobalieva, Rossitza N.
    Fogg, Jonathan M.
    Catanese, Daniel J., Jr.
    Sutthibutpong, Thana
    Chen, Muyuan
    Barker, Anna K.
    Ludtke, Steven J.
    Harris, Sarah A.
    Schmid, Michael F.
    Chiu, Wah
    Zechiedrich, Lynn
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [34] The Causes and Consequences of Topological Stress during DNA Replication
    Keszthelyi, Andrea
    Minchell, Nicola E.
    Baxter, Jonathan
    [J]. GENES, 2016, 7 (12):
  • [35] Why Two? On the Role of (A-)Symmetry in Negative Supercoiling of DNA by Gyrase
    Klostermeier, Dagmar
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (05)
  • [36] DNA topology and transcription
    Kouzine, Fedor
    Levens, David
    Baranello, Laura
    [J]. NUCLEUS, 2014, 5 (03) : 195 - 202
  • [37] Le Gall A, 2017, METHODS MOL BIOL, V1624, P253, DOI 10.1007/978-1-4939-7098-8_19
  • [38] High-Resolution Mapping of the Spatial Organization of a Bacterial Chromosome
    Le, Tung B. K.
    Imakaev, Maxim V.
    Mirny, Leonid A.
    Laub, Michael T.
    [J]. SCIENCE, 2013, 342 (6159) : 731 - 734
  • [39] A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage
    Ledesma, Felipe Cortes
    El Khamisy, Sherif F.
    Zuma, Maria C.
    Osborn, Kay
    Caldecott, Keith W.
    [J]. NATURE, 2009, 461 (7264) : 674 - U125
  • [40] BACTERIAL CHROMATIN - A NEW TWIST TO AN OLD STORY
    LILLEY, D
    [J]. NATURE, 1986, 320 (6057) : 14 - 15