Modeling Vacuum Electronic Devices Using Generalized Impedance Matrices

被引:30
作者
Chernyavskiy, Igor A. [1 ]
Antonsen, Thomas M., Jr. [2 ]
Rodgers, John C. [1 ]
vlasov, Alexander N. [1 ]
Chernin, David [2 ]
Levush, Baruch [1 ]
机构
[1] Naval Res Lab, Washington, DC 20375 USA
[2] Leidos Inc, Reston, VA 20190 USA
关键词
Folded-waveguide (FWG); impedance matrix; large-signal simulation; slow wave structure; traveling wave tube; SIMULATION; SLOW;
D O I
10.1109/TED.2016.2640205
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have developed a general approach to modeling a large class of vacuum electronic devices (VEDs) by using impedance matrices to characterize the circuit structure. Our approach can treat VEDs that have an arbitrary number of interaction gaps, severs, and input and/or output ports thatmay incorporate arbitrarilycomplex matching and/or tuning elements and windows. To find the impedance matrix for a given structure, we use the computational electromagnetics 3-D finite-element code HFSS to compute the responseof the entire structure to an excitation of each individual port and gap. We define voltages and currents as certain integrals over the electric and magnetic fields, respectively, the ratios of which are elements of the generalized impedancematrix. Thismatrix is then imported into a beam-wave interaction code, which is used to compute VED performance (gain, output power, bandwidth, and so on). We have implemented this capability in a new 2-D code TESLA-Z, which has been verified by comparison with the large-signal code TESLA-FW and then validated by comparison with measured data from a Ka-band foldedwaveguide power-booster TWT. Similar capability was also implemented in the 1-D interaction code CHRISTINE-CC.
引用
收藏
页码:536 / 542
页数:7
相关论文
共 14 条
[1]   Transmission Line Model for Folded Waveguide Circuits [J].
Antonsen, Thomas M., Jr. ;
Vlasov, Alexander N. ;
Chernin, David P. ;
Chernyavskiy, Igor A. ;
Levush, Baruch .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (09) :2906-2911
[2]   Advances in modeling and simulation of vacuum electronic devices [J].
Antonsen, TM ;
Mondelli, AA ;
Levush, B ;
Verboncoeur, JP ;
Birdsall, CK .
PROCEEDINGS OF THE IEEE, 1999, 87 (05) :804-839
[3]   MAGY: A time-dependent code for simulation of slow and fast microwave sources [J].
Botton, M ;
Antonsen, TM ;
Levush, B ;
Nguyen, KT ;
Vlasov, AN .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1998, 26 (03) :882-892
[4]   1-D Large Signal Model of Folded-Waveguide Traveling Wave Tubes [J].
Chernin, David ;
Antonsen, Thomas M., Jr. ;
Vlasov, Alexander N. ;
Chernyavskiy, Igor A. ;
Nguyen, Khanh T. ;
Levush, Baruch .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (06) :1699-1706
[5]   Large-Signal Multifrequency Simulation of Coupled-Cavity TWTs [J].
Chernin, David ;
Antonsen, Thomas M., Jr. ;
Chernyavskiy, Igor A. ;
Vlasov, Alexander N. ;
Levush, Baruch ;
Begum, Rasheda ;
Legarra, James R. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (04) :1229-1240
[6]   Large-Signal 2-D Modeling of Folded-Waveguide Traveling Wave Tubes [J].
Chernyavskiy, Igor A. ;
Antonsen, Thomas M., Jr. ;
Vlasov, Alexander N. ;
Chernin, David ;
Nguyen, Khanh T. ;
Levush, Baruch .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (06) :2531-2537
[8]  
Kino G. S., 1966, P C MICR OPT GEN AMP, P49
[9]  
Levush B, 2014, IEEE INT VAC ELECT C, P125, DOI 10.1109/IVEC.2014.6857521
[10]   Recent developments to the MICHELLE 2-D/3-D electron gun and collector modeling code [J].
Petillo, JJ ;
Nelson, EM ;
DeFord, JF ;
Dionne, NJ ;
Levush, B .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2005, 52 (05) :742-748