Multi-start JADE with knowledge transfer for numerical optimization

被引:67
作者
Peng, Fei [1 ]
Tang, Ke [1 ]
Chen, Guoliang [1 ]
Yao, Xin [1 ]
机构
[1] Univ Sci & Technol China, Dept Comp Sci & Technol, Nat Inspired Computat & Applicat Lab, Hefei 230027, Anhui, Peoples R China
来源
2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5 | 2009年
关键词
DIFFERENTIAL EVOLUTION; GLOBAL OPTIMIZATION;
D O I
10.1109/CEC.2009.4983171
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
JADE is a recent variant of Differential Evolution (DE) for numerical optimization, which has been reported to obtain some promising results in experimental study. However, we observed that the reliability, which is an important characteristic of stochastic algorithms, of JADE still needs to be improved. In this paper we apply two strategies together on the original JADE, to dedicatedly improve the reliability of it. We denote the new algorithm as rJADE. In rJADE, we first modify the control parameter adaptation strategy of JADE by adding a weighting strategy. Then, a "restart with knowledge transfer" strategy is applied by utilizing the knowledge obtained from previous failures to guide the subsequent search. Experimental studies show that the proposed rJADE achieved significant improvements on a set of widely used benchmark functions.
引用
收藏
页码:1889 / 1895
页数:7
相关论文
共 22 条
[1]  
[Anonymous], 2005, 2005 SPEC SESS REAL
[2]  
Auger A, 2005, IEEE C EVOL COMPUTAT, P1769
[3]  
Back T., 1996, EVOLUTIONARY ALGORIT, DOI DOI 10.1093/OSO/9780195099713.001.0001
[4]   An Overview of Evolutionary Algorithms for Parameter Optimization [J].
Baeck, Thomas ;
Schwefel, Hans-Paul .
EVOLUTIONARY COMPUTATION, 1993, 1 (01) :1-23
[5]  
Bartz-Beielstein T., 2006, EXPT RES EVOLUTIONAR
[6]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[7]  
Glover F., 1977, DECISION SCI, V8, P156, DOI DOI 10.1111/J.1540-5915.1977.TB01074.X
[8]   Evolving problems to learn about particle swarm optimizers and other search algorithms [J].
Langdon, W. B. ;
Poli, Riccardo .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2007, 11 (05) :561-578
[9]   Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J].
Liang, J. J. ;
Qin, A. K. ;
Suganthan, Ponnuthurai Nagaratnam ;
Baskar, S. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (03) :281-295
[10]   Accelerating differential evolution using an adaptive local search [J].
Noman, Nasimul ;
Iba, Hitoshi .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (01) :107-125